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Figure 1: Fejér’s kernel Km for m = 1, 5, 10.



Lecture notes and course material by Alex Sobolev, Holger Wendland, and others, who previ-

ously taught the course ‘Wavelets and Data Compression’ at the University of Sussex, served

as a starting point for the current lecture notes. The current lecture notes are more than twice

as many pages as the previous version. Apart from corrections and improvements, many new

examples and exercises have been added compared to the previous lecture notes.
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Introduction

Let us consider the following problem. Assume, we want to store a moderately sized image

with a resolution of 1024 × 1024 pixels (this corresponds to a one mega pixel camera!!). For

each pixel our image has the colour information in RGB format with 8 bits per colour, which

gives the nowadays usual 24 bits colour depth. If we simply store all 3 Bytes for each pixel we

would end up with 3 MB storage requirement. This is already quite a lot for such a small image.

Modern cameras have a resolution of up to 7 MB such that storing an image in an uncompressed

way would lead to 21 MB memory requirement. Obviously, this is not acceptable. Hence, it

is necessary to find better representations of the image, meaning also compression techniques.

It is the goal of this lecture to give an introduction into this field. In particular into the area

of compression using the Fourier (or cosine) transform and wavelets. Both have been

already developed to an industry standard:

• The FDCT (fast discrete cosine transform) is the basis of the classical JPEG standard.

• The FDWT (fast discrete wavelet transform) is the basis of the new JPEG 2000 standard.

However, we will only discuss the mathematical ideas here, leaving out most details on efficient

implementation.

The idea behind both methods is the following one. Let us assume that we can treat each

colour component of the image separately. Then, we can interpret the colour distribution as

discrete values of a continuous function, i.e. we assume that there exists a function

f : R2 → R with f(i, j) = ci,j, i, j ∈ {1, 2, . . . , 1024}.

It is now our goal to find a ‘better’ representation of f in the form

f(x, y) =
∑

(i,j)∈Z2

aij eij(x, y) (0.0.1)

with certain given ‘basis’ functions eij and coefficients aij that need to be determined. We

will encounter different basis functions and strategies to compute the coefficients. Though the

sum in (0.0.1) is bi-infinite, which makes an efficient evaluation of f rather difficult, it often is

actually finite or the coefficients decay so far that it can be made finite while making only a

small error in doing so.

For now, it suffices to see that representing the image in such a way consists of two steps:

iii



iv Introduction

• Coding: This step has to be done only once and hence might consume some time. In

this step the coefficients aij are computed, filtered, for example by setting all coefficients

to zero which are smaller than a given threshold, and finally stored. For storing the

remaining coefficients it is important also to store their location, that is, their indices.

This has to be done efficiently, because otherwise the gain of a ‘sparse’ representation is

lost again. This means that what is stored in an efficient way can be quickly retrieved

and allows us to reconstruct a good approximation of the original image.

• Decoding: This has to be done each time the image is viewed. Hence, this step has to

be performed in real time. It consists of recovering the (approximations of the) colour

values cij as the function values f(i, j).

In this lecture, we will often make additional assumptions on the function f . First of all, we will

consider univariate functions (that is, functions of one variable) f : R → R instead of bivariate

functions. Second, the function will often be considered to be periodic with period 2π, that is,

f(x+ 2π) = f(x) for all x ∈ R.

This is not as limiting as it seems, since wavelets are used frequently in signal compression

and signal analysis. For example, acoustic signals (music, speech, bird voices) as a function

of time are examples of univariate functions and these can stored in a compressed format with

the help of wavelets.



Chapter 1

Revision: Linear Spaces

This chapter reviews concepts that are familiar from linear algebra. First we revise the definition

of a linear space and a subspace and consider some examples in Section 1.1. Then we review

the concepts of linear independence and a basis in Section 1.2.

1.1 Linear Spaces and Subspaces

In this lecture course, the considered fields K are either R or C.

Definition 1.1 (linear space or vector space)

A linear space (or vector space) over a field K is a non-empty set X with two alge-

braic operations, namely vector addition ⊕ : X × X → X and scalar multiplication

⊙ : K ×X → X, such that the following properties are all satisfied:

(i) x⊕ y = y ⊕ x for all x, y ∈ X, that is, addition is commutative.

(ii) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z for all x, y, z ∈ X, that is, addition is associative.

(iii) There exists a unique vector O such that x⊕O = x for every x ∈ X. The vector O is

called the zero vector.

(iv) For every x ∈ X there exists a unique vector, denoted −x, such that x ⊕ (−x) = 0.

The vector −x is called the (additive) inverse of x.

(v) α⊙ (β ⊙ x) = (αβ) ⊙ x for all α, β ∈ K and all x ∈ X;

(vi) 1 ⊙ x = x for all x ∈ X (where 1 is the number 1 in R and C);

(vii) α⊙ (x⊕ y) = (α⊙ x) ⊕ (α⊙ y) for all α ∈ K and all x, y ∈ X (1st distributive law);

(viii) (α+ β)⊙ x = (α⊙x)⊕ (β⊙ x) for all α, β ∈ K and all x ∈ X (2nd distributive law).

If K = R, the set X is called a real linear space. If K = C, the set X is called a complex

linear space.

Here are some examples of vector spaces.

1



2 1.1. Linear Spaces and Subspaces

Example 1.2 (elementary examples of linear spaces)

The scalar field itself and tensor products of it are vector spaces:

(a) The complex numbers C and the d-dimensional complex space Cd are complex linear spaces.

(b) The real numbers R and the d-dimensional Euclidean space Rd are real linear spaces. 2

Example 1.3 (space ℓ(N) of infinite sequences)

Let ℓ(N) be the space of all infinite sequences of the form

x = (x1, x2, . . . , xk, . . . ) = (xk)k∈N,

with the elements xk ∈ K. Addition and multiplication by scalars is defined element-wise:

(x+ y)k := xk + yk, k ∈ N;

(αx)k := αxk, k ∈ N, α ∈ K.

It is easy to see that X with these operations satisfies all the requirements of a vector space. 2

Exercise 1 Show that the set ℓ(N) of infinite sequences introduced in Example 1.3 with the

given addition and scalar multiplication is a vector space.

Example 1.4 (space of continuous complex-valued functions on [a, b])

The set of continuous complex-valued functions C([a, b]) on the interval [a, b] forms a complex

linear space (vector space) with the pointwise addition

(f + g)(x) := f(x) + g(x) for all x ∈ [a, b] (1.1.1)

and the pointwise scalar multiplication

(α f)(x) := α f(x) for all x ∈ [a, b] and all α ∈ C. (1.1.2)

This is verified in Exercise 2 below. 2

Exercise 2 Show that the set C([a, b]) of continuous complex-valued functions on [a, b] with

the pointwise addition (1.1.1) and the pointwise scalar multiplication (1.1.2) is a complex linear

space.

Exercise 3 Show that the set Π(R) of real-valued polynomials on R with the pointwise addition

(1.1.1) and the pointwise scalar multiplication (1.1.2) forms a real linear space.

Often we will work with subspaces of (larger) vector spaces.

Definition 1.5 (subspace of a linear space)

A subspace of a linear space X over the field K is a non-empty subset Y ⊂ X such that

for all y, w ∈ Y and all scalars α, β ∈ K one has α y + β w ∈ Y .

A subspace of a linear space is (as the name implies) also a linear space.
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Lemma 1.6 (subspace of a linear space is also a linear space)

Let X be a linear space, and let Y be a subspace of X. Then Y (with the same addition and

same scalar multiplication as X) is also a vector space (over the same field K).

Example 1.7 (real line through origin in R2)

Let R2 be the usual 2-dimensional Euclidean space which is a real linear space. Consider an

arbitrary vector x = (x1, x2)
T ∈ R2. Then Y := {αx : α ∈ R} is a subspace of R2. 2

Example 1.8 (function spaces on [a, b])

Let F ([a, b]) denote the space of all complex-valued functions on [a, b] with the pointwise addi-

tion (1.1.1) and the pointwise scalar multiplication (1.1.2). Then F ([a, b]) is a complex linear

space, and the space C([a, b]) of continuous complex-valued functions is a subspace. 2

Exercise 4 For each of the following given linear spaces X and their subsets Y , investigate

whether the subset Y is a subspace. Give proofs of your answers! (You do not have to verify

that the given linear space X is a linear space.)

(a) Is the subset Y = {y + αx : α ∈ R}, where x,y ∈ R2 are two arbitrary vectors, a subspace

of the Euclidean space X = R2?

(b) Let X = C([a, b]) be the space of continuous complex-valued functions on [a, b]. Is the set

Y of constant functions on [a, b],

Y = {f : [a, b] → R, f(x) := c for all x ∈ [a, b] : c ∈ C}

a subspace of X = C([a, b])?

(c) Let X = C be the usual complex linear space of complex numbers. Is the subset Y = R a

subspace?

(d) Is the set Y = {f ∈ C([a, b]) : f(a) = 1} a subspace of the linear space X = C([a, b]) of

continuous complex-valued functions?

(e) Is the set Y = Π([a, b]) of all polynomials p(x) = a0 +a1 x+a2 x
2 + . . .+an x

n, n ∈ N0, with

complex coefficients a0, a1, . . . , an ∈ C, a subspace of the space X = C([a, b]) of continuous

complex-valued functions on [a, b]?

Exercise 5 Give the proof of Lemma 1.6.

1.2 Linear Independence and Bases

Finally we revise the notions of linear combination, span, linear independence and linear de-

pendance, and a basis of a linear space and its dimension. While this may initially seem a

revision of fairly basic material, we will later-on apply this terminology in the context of (often

infinite dimensional) linear spaces of functions.



4 1.2. Linear Independence and Bases

Definition 1.9 (linear combination and span)

Let X be a linear space over the field K. A linear combination of vectors x1, x2, . . . , xN

in X is an expression of the form

N∑

k=1

αk xk = α1 x1 + α2 x2 + . . .+ αN xN , αk ∈ K.

The set of all linear combinations of vectors from a set M ⊂ X is called the span of M ,

denoted by span (M).

We note that span (M) is a subspace of X, because it is closed under vector addition and

scalar multiplication.

Example 1.10 (linear combination and span)

(a) In R3, let M = {(1, 2, 3)T , (2, 0, 1)T}. Then the span of M is given by

spanM =








x

y

z


 = α1




1

2

3


+ α2




2

0

1


 : α1, α2 ∈ R



 .

(b) In the space C(R) of continuous complex-valued functions on R, the polynomial

p(x) = i+ 3 x+ (17 + 2 i) x3 is a linear combination of the monomials 1, x, x3.

(c) The linear space Π3(R) of all polynomials of degree ≤ 3 on R with complex coefficients is a

subspace of C(R) and is the span of the monomials 1, x, x2, x3, that is,

Π3(R) = span
{
p0(x) = 1, p1(x) = x, p2(x) = x2, p3(x) = x3

}
.

As before C(R) is the space of continuous complex-valued functions on R. 2

Definition 1.11 (linear independence and linear dependence)

Let X be a linear space over the field K.

(i) A subset M ⊂ X is said to be linearly independent if for any finite subset

{x1, x2, . . . , xN} ⊂M the equality

N∑

k=1

αk xk = α1 x1 + α2 x2 + . . .+ αN xN = O

is satisfied only for α1 = α2 = · · · = αN = 0.

(ii) A set M ⊂ X is said to be linearly dependent, if it is not linearly independent.

Note: If M is linearly dependent, then one of the vectors in M can be written as a linear

combination of the others (see Definition 1.11).

Let us consider some examples.
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Example 1.12 (linear independence and linear dependence)

(a) The vectors (1, 1, 0)T , (3, 2, 0)T , and (0, 0, 4)T are linearly independent in R3.

(b) The vectors (1, 2)T , (1 − 3)T , and (−1, 0)T are linearly dependent in R2.

(c) In the space C([a, b]) of continuous complex-valued functions on [a, b], the polynomials

p1(x) = x, p2(x) = 1, p3(x) = i+ x2, and p4(x) = x2 are linearly dependent, because

0 p1(x) + (−i) p2(x) + 1 p3(x) + (−1) p4(x) = 0− i+
(
i+ x2

)
− x2 = 0 for all x ∈ [a, b]. 2

Exercise 6 Investigate which of the following sets are linearly independent in the given linear

space. Give a proof of your answer.

(a) Are the vectors (0, 1)T , (i, 0)T , and (1, 1)T linearly dependent or linearly independent in C2?

(b) Are the vectors (1, 2, 0)T , (1,−1,−1)T , and (0, 0, 1)T linearly independent in R3 or not?

(c) Are the functions f(x) = x sin x, g(x) = cos x, h(x) = sin x, and k(x) = x linearly inde-

pendent in the space C([a, b]) of continuous complex-valued functions on [a, b], or not?

Exercise 7 Show that the set of monomials

M =
{
1, x, x2, . . . , xn, xn+1, . . .

}

is linearly independent in the complex linear space C(R) of continuous complex-valued functions

on R.

Definition 1.13 (dimension of a linear space)

Let X be a linear space over the field K.

(i) The space X is said to be finite dimensional if there is a positive integer d such that

X contains d linearly independent vectors and every subset M containing more than

d vectors is linearly dependent. In this case d is called the dimension of X, and we

write d = dim(X).

(ii) If X is not finite dimensional, it is infinite dimensional.

Definition 1.14 (basis of a linear space)

Let X be a finite dimensional linear space over the field K. If a linearly independent subset

M of X spans all of X, that is, span (M) = X, then M is called a basis of X.

From the last two definitions we can immediately conclude to following corollary.

Corollary 1.15 (characterisation of basis in finite dimensional linear space)

Let X be a finite dimensional linear space with dimension dim(X) = d. Then every set of

d linearly independent vectors forms a basis.
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Before we give some examples we remark on a consequence of the Definition 1.14 and Corollary

1.15: If X is a d-dimensional space, and if {e1, e2, . . . , ed} is a basis of X, then every x ∈ X

can be uniquely represented as

x =
d∑

k=1

αk ek,

with uniquely determined coefficients α1, α2, . . . , αd ∈ K.

Example 1.16 (canonical basis in Rd)

Let Rd be the d-dimensional Euclidean space. Then the vectors

e1 = (1, 0, 0, . . . , 0, 0)T , e2 = (0, 1, 0, . . . , 0, 0)T , . . . , ed = (0, 0, 0, . . . , 0, 1)T ,

(where ej has the jth entry 1 and all other entries zero) form the canonical basis of Rd. 2

Example 1.17 (infinite dimensional function spaces)

The space C([a, b]) of continuous complex-valued functions on [a, b] is infinite dimensional. 2

Exercise 8 Let Π(R) = span {1, x, x2, x3, . . . , xn, . . .} ⊂ C(R) denote the set of all polynomials

on R with complex coefficients, and let

Πn(R) = span {1, x, x2, x3, . . . , xn}

be the subset of those polynomials on R of degree ≤ n with complex coefficients.

(a) Show that Πn(R) is a finite dimensional complex linear space and find its dimension.

(b) Show that Π(R) is an infinite dimensional complex linear space.

Exercise 9 Proof Corollary 1.15.



Chapter 2

Normed Linear Spaces and Their

Topology

In this chapter we review some important concepts that you will most likely have already

encountered previously in other courses. Section 2.1 reviews material on norms and normed

linear spaces. Here we introduce the p-norms for the sequence spaces ℓp(N) and the Lp([a, b])-

norms and Lp(R)-norms for the spaces Lp([a, b]) and Lp(R) of functions whose pth powers are

Lebesgue integrable over [a, b] and R, respectively. In Section 2.2 we encounter important

inequalities, namely Hölder’s inequality and the Minkowski inequality, that will be used

throughout the course and that allow us to show that the ℓp(N), Lp([a, b]), and Lp(R) are indeed

normed linear spaces. In Section 2.3 we revise material on elementary topology about open

and closed sets, accumulation points, the closure of a set, and dense sets and separable sets in a

linear space. In Section 2.4 we finally discuss the notions of convergence and completeness

in a normed linear space. All concepts will be illustrated with examples.

As in the previous chapter the field K is either R in which case we consider a real linear space

or C in which case we consider a complex linear space.

2.1 Norms

Definition 2.1 (norm and normed linear space)

A norm on a linear space X over the field K is a real-valued function ‖ · ‖ : X → R,

satisfying the following conditions:

(i) ‖x‖ ≥ 0 for all x ∈ X.

(ii) ‖x‖ = 0 if and only if x = O (non-degeneracy).

(iii) ‖αx‖ = |α| ‖x‖ for all α ∈ K and all x ∈ X.

(iv) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X (triangle inequality).

The vector space X together with a norm ‖ · ‖ : X → R is called a normed linear space

(or normed vector space).

7



8 2.1. Norms

Note that the triangle inequality implies the lower triangle inequality

∣∣‖x‖ − ‖y‖
∣∣ ≤ ‖x− y‖ for all x, y ∈ X.

Example 2.2 (Euclidean norm on Rd)

The Euclidean norm on Rd is defined by

‖x‖2 =

(
d∑

k=1

|xk|2
)1/2

,

which is the (geometric) length of the vector x = (x1, x2, . . . , xd)
T . 2

Example 2.3 (other norms for Rd and Cd)

The linear space Rd (or Cd) is a normed vector space with each of the following norms

‖x‖p :=

(
d∑

k=1

|xk|p
)1/p

, 1 ≤ p <∞, (2.1.1)

and

‖x‖∞ := max
k=1,2,...,d

|xk|. (2.1.2)

For p = 2, we have the special case of the Euclidean norm. Apart from p = 1 and p = ∞
it is not trivial to verify that these functions are actually norms for Rd (or Cd). The difficult

property is the triangle inequality, and we will learn in the next section how to verify it. 2

Exercise 10 Verify that Cd with the norm ‖ · ‖1, defined by (2.1.1) with p = 1, is a complex

normed linear space.

Exercise 11 Verify that Cd with the norm ‖ · ‖∞, defined by (2.1.2), is a complex normed

linear space.

Definition 2.4 (equivalent norms)

Let X be a linear space and let ‖ · ‖ : X → K and ‖| · ‖| : X → K denote two different norms

for X. The norms ‖ · ‖ and ‖| · ‖| for X are called equivalent (or equivalent norms), if

there exist two positive real constants c1 and c2 such that

c1 ‖x‖ ≤ ‖|x‖| ≤ c2 ‖x‖ for all x ∈ X.

It is important to be aware of the following lemma which will not be proved in this course.

Lemma 2.5 (all norms on a finite dimensional linear space are equivalent)

On any finite dimensional linear space all norms are equivalent.

It should be noted that the above lemma does not hold for infinite dimensional spaces!
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We are going to introduce spaces of sequences x = (x1, x2, . . . , xn, . . .) = (xk)k∈N, where

xk ∈ K for all k ∈ N (see also Example 1.3).

Definition 2.6 (sequence spaces ℓp(N), where 1 ≤ p ≤ ∞)

Let 1 ≤ p < ∞. A sequence x = (x1, x2, x3, . . .) = (xk)k∈N, where xk ∈ K for all k ∈ N,

belongs to the sequence space ℓp(N) if

‖x‖p :=

(
∞∑

k=1

|xk|p
)1/p

(2.1.3)

is finite. A sequence x = (x1, x2, x3, . . .) = (xk)k∈N,where xk ∈ K for all k ∈ N, belongs to

the sequence space ℓ∞(N) if

‖x‖∞ := sup
k∈N

|xk| (2.1.4)

is finite. The functions ‖ · ‖p in (2.1.3) for 1 ≤ p < ∞ and ‖ · ‖∞ in (2.1.4) for p = ∞,

respectively, are called the ℓp(N)-norms.

However, it should be noted that we have not yet verified that ‖ · ‖p is actually a norm for

ℓp(N). This is not obvious and is only straightforward to verify for ℓ1(N) and ℓ∞(N). To show

that ‖ · ‖p is a norm for ℓp(N) with 1 < p <∞, we need the inequalities that are proved in the

next section.

Example 2.7 (sequence spaces ℓ1(N) and ℓ2(N))

The sequence x = (1/k)k∈N is in ℓ2(N) but not in ℓ1(N), because

‖x‖2 =

∞∑

k=0

∣∣∣∣
1

k

∣∣∣∣
2

=

∞∑

k=0

1

k2
<∞,

whereas

‖x‖1 =
∞∑

k=0

∣∣∣∣
1

k

∣∣∣∣ =
∞∑

k=0

1

k
= ∞. 2

Exercise 12 Show that ℓ1(N) with ‖ · ‖1, defined by (2.1.3) with p = 1, is a normed linear

space.

Exercise 13 Show that ℓ∞(N) with ‖ · ‖∞, defined by (2.1.4), is a normed linear space.

Important examples of normed linear function spaces are C([a, b]) with the supremum norm

and Lp([a, b]) defined below.

Example 2.8 (space C([a, b]) with the supremum norm)

The space C([a, b]) of continuous complex-valued functions on [a, b] with the supremum norm

‖f‖C[a,b] := max
x∈[a,b]

|f(x)|, f ∈ C([a, b]), (2.1.5)

is a normed linear space. 2
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Exercise 14 Verify that the space C([a, b]) of continuous complex-valued functions on [a, b]

with the supremum norm (2.1.5) is a normed linear space.

Note: The theorem below mentions the so-called essential supremum in

ess−sup
x∈[a,b]

|f(x)|.

When taking the essential supremum of |f(x)| on [a, b], we may ignore the values of f on sets

of Lebesgue measure zero. For example, finite sets of points in R or the set N have Lebesgue

measure zero. To get a full understanding of sets of Lebesgue measure zero you will need to

learn about the Lebesgue integral. However, we will not use the spaces L∞([a, b]) and L∞(R)

a lot (if at all) in this course; so not having covered the Lebesgue integral in other courses will

not cause any problems.

Definition 2.9 (spaces Lp([a, b]), where 1 ≤ p ≤ ∞)

Let 1 ≤ p < ∞. The space of those measurable complex-valued functions defined on the

interval [a, b] for which

‖f‖Lp([a,b]) :=

(∫ b

a

|f(x)|p dx

)1/p

(2.1.6)

is finite, is denoted by Lp([a, b]). If p = ∞, we define

‖f‖L∞([a,b]) := ess−sup
x∈[a,b]

|f(x)|, (2.1.7)

and denote the space of those complex-valued functions defined on the interval [a, b] for which

‖f‖L∞([a,b]) < ∞ by L∞([a, b]). The functions ‖ · ‖Lp([a,b]) defined by (2.1.6) for 1 ≤ p < ∞
and by (2.1.7) for p = ∞ are called the Lp([a, b])-norms.

Analogously we define Lp-spaces on R.

Definition 2.10 (spaces Lp(R), where 1 ≤ p ≤ ∞)

Let 1 ≤ p < ∞. The space of those measurable complex-valued functions defined on R for

which

‖f‖Lp(R) :=

(∫

R

|f(x)|p dx

)1/p

(2.1.8)

is finite, is denoted by Lp(R). If p = ∞, we define

‖f‖L∞(R) := ess−sup
x∈R

|f(x)|, (2.1.9)

and denote the space of those complex-valued functions defined on R for which ‖f‖L∞(R) <∞
by L∞(R). The functions ‖ · ‖Lp(R) defined by (2.1.8) for 1 ≤ p < ∞ and by (2.1.9) for

p = ∞ are called the Lp(R)-norms.

As for the spaces ℓp(N), we need again to be careful, as only for p = 1 and p = ∞ it is easily
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verified that Lp([a, b]) and Lp(R) are normed linear spaces. For 1 < p < ∞, we will see in the

next section how to verify that ‖ · ‖Lp
is indeed a norm.

Example 2.11 (L1([0, 1]) and L2([0, 1]))

The function f(x) = 1/
√
x = x−1/2 is in L1([0, 1]) but not in L2([0, 1]). Before we verify this we

note that the fact that the function has a singularity at x = 0 is in itself not a problem, since

{0} is a set of Lebesgue measure zero. (Even for the Riemann integral, the value of a function

at a single individual point can be ignored.) We compute the norms

‖f‖L1([0,1]) =

∫ 1

0

|x−1/2| dx =

∫ 1

0

x−1/2 dx =
[
2 x1/2

]1
0

= 2 <∞

and

‖f‖L2([0,1]) =

∫ 1

0

|x−1/2|2 dx =

∫ 1

0

x−1 dx = [ln(x)]10 = ∞.

Hence clearly, f ∈ L1([0, 1]) and f /∈ L2([0, 1]). 2

Remark 2.12 (Lp-spaces for more general sets)

It is clear that, for 1 ≤ p <∞ and ‘more general sets’ Ω ⊂ R, we can also define the space

Lp(Ω) as the set of all those measurable functions on Ω for which

‖f‖Lp(Ω) =

(∫

Ω

|f(x)|p dx

)1/p

(2.1.10)

is finite. It can then be verified (analogously to the cases Ω = [a, b] and Ω = R) that (2.1.10)

is a norm and that hence Lp(Ω) is a normed linear space. By ‘more general sets’ we mean

‘Lebesgue measurable sets’; these include in particular all open and half-open intervals.

Exercise 15 Let the sequence x = (xk)k∈N be defined by xk = k−β, k ∈ N, with a real number

β > 0.

(a) Find the values of β for which x ∈ ℓ1(N).

(b) Find the values of β for which x ∈ ℓp(N) for a given real p with 1 < p <∞.

Exercise 16 Let f(x) := x−α, x ∈ (0,∞), with a real number α > 0.

(a) Find the values of α for which f ∈ L
(
(0, 1)

)
.

(b) Find the values of α for which f ∈ L
(
(1,∞)

)
.

Exercise 17 Check whether the function

f(x) =
√

|x1|2 + |x2|2 +
√

|x1 x2|, x = (x1, x2)
T ∈ R2,

defines a norm for R2. Give a proof of your answer.

Exercise 18 Show that the space L1([a, b]) the norm ‖ · ‖L1([a,b]) defined by (2.1.6) with p = 1,

is a normed linear space. You do not have to show the non-degeneracy of the norm, as this

requires knowledge of the Lebesgue integral.
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Exercise 19 Consider the linear space L1([0, 1]). Is the supremum norm

‖f‖C([0,1]) := sup
x∈[0,1]

|f(x)|

a norm for L1([0, 1])? Give a proof of your answers! (If you do not know about the Lebesgue

integral, then considering the Riemann integral will be sufficient to answer this question.)

2.2 Hölder’s and Minkowski’s Inequalities and the Spaces

ℓp(N), Lp([a, b]) and Lp(R)

To be able to prove that ℓp(N), Lp([a, b]), and Lp(R), where 1 ≤ p < ∞, are normed linear

spaces, we need to prove Hölder’s inequality and the Minkowski inequality. These will

allow us to verify the triangle inequality in the spaces ℓp(N), Lp([a, b]), and Lp(R) .

In this section we use the following notation: 1 ≤ p, q ≤ ∞ are real numbers such that

1

p
+

1

q
= 1,

where the convention is that if p = 1 then q = ∞ and vice versa. Then the numbers p and q

are called conjugate exponents. Note that then

q − 1 =
1

p− 1
and (p− 1) q = p.

Lemma 2.13 (Young’s inequality)

Let 1 < p, q <∞ be conjugate exponents, that is, 1/p+1/q = 1. Then for any non-negative

real numbers a and b we have

a b ≤ ap

p
+
bq

q
.

Young’s inequality will help us to prove the important Hölder’s inequality.

Proof of Lemma 2.13: Recall that the exponential function f(t) = exp(t) is convex, that is,

for any λ ∈ [0, 1] and any s, t ∈ R, we have

f(λs+ (1 − λ)t) ≤ λf(s) + (1 − λ)f(t). (2.2.1)

Using this and ln(x y) = ln(x) + ln(y), ln(xy) = y ln(x), and 1/p+ 1/q = 1, we find

a b = exp
(
ln(a b)

)
= exp

(
ln(a) + ln(b)

)
= exp

(
1

p
ln(ap) +

1

q
ln(bq)

)

≤ 1

p
exp

(
ln(ap)

)
+

1

q
exp

(
ln(bq)

)
=

1

p
ap +

1

q
bq,
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where we have used (2.2.1) with λ = 1/p and 1− λ = 1− 1/p = 1/q in the second last step. 2

Now we can prove Hölder’s inequality with the help of Young’s inequality.

Lemma 2.14 (Hölder’s inequality for Rd and Cd and the sequence spaces ℓp(N))

Let 1 ≤ p, q ≤ ∞ be conjugate exponents, that is, 1/p+ 1/q = 1.

(i) Then for any x,y ∈ Rd (or x,y ∈ Cd)

d∑

k=1

|xk yk| ≤
(

d∑

k=1

|xk|p
)1/p( d∑

k=1

|yk|q
)1/q

= ‖x‖p ‖y‖q, 1 < p, q <∞, (2.2.2)

and for p = 1 and q = ∞
d∑

k=1

|xk yk| ≤
(

d∑

k=1

|xk|
)(

sup
k=1,2,...,d

|yk|
)

= ‖x‖1 ‖y‖∞. (2.2.3)

(ii) Then for any sequences x = (xk)k∈N ∈ ℓp(N) and y = (yk)k∈N ∈ ℓq(N) we have

∑

k∈N

|xk yk| ≤
(∑

k∈N

|xk|p
)1/p(∑

k∈N

|yk|q
)1/q

= ‖x‖p ‖y‖q, 1 < p, q <∞, (2.2.4)

and for p = 1 and q = ∞

∑

k∈N

|xkyk| ≤
(∑

k∈N

|xk|
)(

sup
k∈N

|yk|
)

= ‖x‖1 ‖y‖∞. (2.2.5)

The estimates (2.2.2) and (2.2.3), (2.2.4) and (2.2.5) are called Hölder’s inequality. In

the special case p = q = 2, Hölder’s inequality is the Cauchy-Schwarz inequality.

We have an analogous lemma for the function spaces Lp([a, b]) and Lp(R).

Lemma 2.15 (Hölder’s inequality for Lp([a, b]))

Let 1 ≤ p, q ≤ ∞ be conjugate exponents, that is, 1/p + 1/q = 1. For any functions

f ∈ Lp([a, b]) and g ∈ Lq([a, b]) we have for 1 < p, q <∞
∫ b

a

|f(x) g(x)| dx ≤
(∫ b

a

|f(x)|p dx

)1/p(∫ b

a

|g(x)|q dx

)1/q

= ‖f‖Lp([a,b]) ‖g‖Lq([a,b]),

(2.2.6)

and for p = 1 and q = ∞
∫ b

a

|f(x) g(x)| dx ≤
(∫ b

a

|f(x)| dx
)(

ess−sup
x∈[a,b]

|g(x)|
)

= ‖f‖L1([a,b]) ‖g‖L∞([a,b]). (2.2.7)

The estimates (2.2.6) and (2.2.7) are called Hölder’s inequality. In the special case

p = q = 2, Hölder’s inequality is the Cauchy-Schwarz inequality.
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Lemma 2.16 (Hölder’s inequality for Lp(R))

Let 1 ≤ p, q ≤ ∞ be conjugate exponents, that is, 1/p + 1/q = 1. For any functions

f ∈ Lp(R) and g ∈ Lq(R) we have for 1 < p, q <∞
∫

R

|f(x) g(x)| dx ≤
(∫

R

|f(x)|p dx

)1/p(∫

R

|g(x)|q dx

)1/q

= ‖f‖Lp(R) ‖g‖Lq(R), (2.2.8)

and for p = 1 and q = ∞
∫

R

|f(x) g(x)| dx ≤
(∫

R

|f(x)| dx
)(

ess−sup
x∈R

|g(x)|
)

= ‖f‖L1(R) ‖g‖L∞(R). (2.2.9)

The estimates (2.2.8) and (2.2.9) are called Hölder’s inequality. In the special case

p = q = 2, Hölder’s inequality is the Cauchy-Schwarz inequality.

Proof of Lemma 2.14: We proof the result only in the case of sequences. By setting xk = 0

for k > d, (2.2.4) and (2.2.5) then immediately imply (2.2.2) and (2.2.3), respectively.

We start with the observation that if x = (0)k∈N = (0, 0, . . .) or if y = (0)k∈N = (0, 0, . . .),

respectively, then in (2.2.4) and (2.2.5) the left hand-side is zero. Also we have ‖x‖p = 0 or

‖y‖q = 0, respectively, and hence the right-hand side is zero. Thus if x = (0)k∈N or y = (0)k∈N,

then Hölder’s inequality becomes an equality and is trivially true.

Now assume that x = (xk)k∈N and y = (yk)k∈N are both different from the zero sequence.

For the special case p = 1 and q = ∞ we have for each k ∈ N the estimate

|xk yk| ≤ |xk| |yk| ≤ |xk| sup
m∈N

|ym| = |xk| ‖y‖∞,

since y = (yk)k∈N ∈ ℓ∞(N). Since x = (xk)k∈N ∈ ℓ1(N), we know that (|xk| ‖y‖∞)k∈N is also in

ℓ1(N). Thus from the dominated converge theorem for series,

∑

k∈N

|xk yk| ≤
∑

k∈N

|xk| |yk| ≤
∑

k∈N

|xk| ‖y‖∞ = ‖y‖∞
∑

k∈N

|xk| = ‖x‖1 ‖y‖∞,

which verifies (2.2.5).

For 1 < p, q < ∞, it is not clear that the sum on the left-hand side of Hölder’s inequality

converges; thus we consider its partial sums: using Young’s inequality we derive

1

‖x‖p ‖y‖q

n∑

k=1

|xk yk| =

n∑

k=1

|xk|
‖x‖p

|yk|
‖y‖q

≤
n∑

k=1

(
1

p

|xk|p
‖x‖p

p
+

1

q

|yk|q
‖y‖q

q

)

=
n∑

k=1

1

p

|xk|p
‖x‖p

p
+

n∑

k=1

1

q

|yk|q
‖y‖q

q
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=
1

p

1

‖x‖p
p

n∑

k=1

|xk|p +
1

q

1

‖y‖q
q

n∑

k=1

|yk|q

≤ 1

p

1

‖x‖p
p

∞∑

k=1

|xk|p +
1

q

1

‖y‖q
q

∞∑

k=1

|yk|q

=
1

p

1

‖x‖p
p
‖x‖p

p +
1

q

1

‖y‖q
q
‖y‖q

q

=
1

p
+

1

q
= 1.

Multiplying this equation with ‖x‖p ‖y‖q gives

n∑

k=1

|xk yk| ≤ ‖x‖p ‖y‖q for all n ∈ N. (2.2.10)

As the partial sums sn :=
∑n

k=1 |xk| |yk| form an increasing sequence (sn)n∈N of real numbers

which, from (2.2.10), is bounded from above, we know that the series converges and that the

upper bound is also valid for the limit. Hence letting k → ∞ in (2.2.10) gives

∞∑

k=1

|xk yk| ≤ ‖x‖p ‖y‖q

which proves the stated result. 2

Lemma 2.15 and Lemma 2.16 are proved analogously.

With the help of Hölder’s inequality we can prove the Minkowski inequality which provides the

triangle inequality for the norms ‖ · ‖p, ‖ · ‖Lp([a,b]), and ‖ · ‖Lp(R).

Lemma 2.17 (Minkowski Inequality for Rn, Cn and ℓp(N))

Let 1 ≤ p <∞.

(i) For any vectors x,y ∈ Rd (or x,y ∈ Cd), we have

(
d∑

k=1

|xk + yk|p
)1/p

≤
(

d∑

k=1

|xk|p
)1/p

+

(
d∑

k=1

|yk|p
)1/p

. (2.2.11)

(ii) For any sequences x = (xk)k∈N and y = (yk)k∈N in ℓp(N), we have

(∑

k∈N

|xk + yk|p
)1/p

≤
(∑

k∈N

|xk|p
)1/p

+

(∑

k∈N

|yk|p
)1/p

. (2.2.12)

Analogously we have for the spaces Lp([a, b]) and Lp(R) a Minkowski’s inequality.
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Lemma 2.18 (Minkowski Inequality for Lp([a, b]) and Lp(R))

Let 1 ≤ p <∞.

(i) For any functions f, g ∈ Lp([a, b]) we have

(∫ b

a

|f(x) + g(x)|p dx

)1/p

≤
(∫ b

a

|f(x)|p dx

)1/p

+

(∫ b

a

|g(x)|p dx

)1/p

. (2.2.13)

(ii) For any functions f, g ∈ Lp(R) we have

(∫

R

|f(x) + g(x)|p dx

)1/p

≤
(∫

R

|f(x)|p dx

)1/p

+

(∫

R

|g(x)|p dx

)1/p

. (2.2.14)

Proof of Lemma 2.17: Again, we prove the result only in the case of sequences. By setting

xk = 0 for k > d, (2.2.12) then immediately implies (2.2.11).

For p = 1, the Minkowski inequality follows straightforward from the triangle inequality for

real numbers: As |xx + yk| ≤ |xk| + |yk| we have
∑

k∈N

|xk + yk| ≤
∑

k∈N

(
|xk| + |yk|

)
=
∑

k∈N

|xk| +
∑

k∈N

|yk|.

Now let 1 < p < ∞. First we observe that for x+ y = (0)k∈N the estimate (2.2.12) is trivially

true. Thus we assume from now on that x + y 6= (0)k∈N. As we do not yet know that the

sequence x+ y = (xk + yk)k∈N is in ℓp(N), we start by considering the partial sums

sn :=

n∑

k=1

|xk + yk|p

We choose q such that p and q are conjugate, that is, 1/p+1/q = 1. From the triangle inequality

for complex numbers, we find

n∑

k=1

|xk + yk|p =

n∑

k=0

|xk + yk|p−1 |xk + yk|

≤
n∑

k=0

|xk + yk|p−1
(
|xk| + |yk|

)

=

n∑

k=0

|xk + yk|p−1 |xk| +
n∑

k=0

|xk + yk|p−1 |yk|. (2.2.15)

Since the sum in (2.2.15) is finite, we can use Hölder’s inequality (note (p− 1)q = p)

n∑

k=1

|xk + yk|p =

n∑

k=0

|xk + yk|p−1 |xk| +
n∑

k=0

|xk + yk|p−1 |yk|

≤
(

n∑

k=0

|xk|p
)1/p( n∑

k=0

|xk + yk|(p−1)q

)1/q

+

(
n∑

k=0

|yk|p
)1/p( n∑

k=0

|xk + yk|(p−1)q

)1/q
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≤
(

∞∑

k=0

|xk|p
)1/p( n∑

k=0

|xk + yk|p
)1/q

+

(
∞∑

k=0

|yk|p
)1/p( n∑

k=0

|xk + yk|p
)1/q

=
(
‖x‖p + ‖y‖p

)( n∑

k=0

|xk + yk|p
)1/q

.

We know that the upper bound is finite, since x = (xk)k∈N and y = (yk)k∈N are in ℓp(N).

Dividing by the second factor in the last line (which non-zero for large enough n) and using

1 − 1/q = 1/p, gives

(
n∑

k=0

|xk + yk|p
)1/p

=

(
n∑

k=0

|xk + yk|p
)1−1/q

≤ ‖x‖p + ‖y‖p for all n ≥ N,

where N is the smallest positive integer for which that xN + yN 6= 0. Since this estimate

estimate is uniformly in n and since the left-hand side increases with n ≥ N , we may take the

limit for n→ ∞ on the left-hand side, and the estimate is still satisfied in the limit. Thus

‖x+ y‖p =

(
∞∑

k=0

|xk + yk|p
)1/p

≤ ‖x‖p + ‖y‖p

which proves desired result. 2

Lemma 2.2.13 is proved analogously.

The lemmas above provide us with tools to verify that the spaces Rd (or Cn) with the p-norm

‖ · ‖p, and the sequence spaces ℓp(N) and the function spaces Lp([a, b]) and Lp(R) are normed

linear spaces.

Theorem 2.19 (Rd and Cd with the p-norm ‖ · ‖p are normed linear spaces)

Let 1 ≤ p <∞. The space Rd (or Cd) with the function ‖ · ‖p : Rd → R (or ‖ · ‖p : Cd → R),

‖x‖p :=

(
d∑

k=1

|xk|p
)1/p

, x = (x1, x2, . . . , xd)
T ,

is a normed linear space.

The space Rd (or Cd) with the function ‖ · ‖∞ : Rd → R (or ‖ · ‖∞ : Cd → R),

‖x‖∞ := sup
k=1,2,...,d

|xk|, x = (x1, x2, . . . , xd)
T ,

is a normed linear space.
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Theorem 2.20 (ℓp(N) with the p-norm ‖ · ‖p is a normed linear space)

Let 1 ≤ p <∞. The sequence space ℓp(N) with the function ‖ · ‖p : ℓp(N) → R,

‖x‖p :=

(∑

k∈N

|xk|p
)1/p

, x = (xk)k∈N ∈ ℓp(N), (2.2.16)

is a normed linear space.

The sequence space ℓ∞(N) with the function ‖ · ‖∞ : ℓ∞(N) → R,

‖x‖∞ := sup
k∈N

|xk|, x = (xk)k∈N ∈ ℓ∞(N), (2.2.17)

is a normed linear space.

We only prove Theorem 2.20, as the proof of Theorem 2.19 is completely analogous.

Proof of Theorem 2.20: We only discuss the case 1 < p <∞, as the cases p = 1 and p = ∞
were discussed as exercises in the previous section.

First we have to give some thought to the fact why ℓp(N) is a vector space. Since we know (see

Exercise 1.3)) that the space ℓ(N) of all sequence x = (xk)k∈N in K is a linear space and since

ℓp(N) ⊂ ℓ(N), to verify that ℓp(N) is a linear space, we only have to show that x + y ∈ ℓp(N)

and αx ∈ ℓp(N) for all x, y ∈ ℓp(N) and α ∈ K.

As α (xk)k∈N = (αxk)k∈N, we have

‖αx‖p =

(∑

k∈N

|αxk|p
)1/p

=

(
|α|p

∑

k∈N

|xk|p
)1/p

= |α|
(∑

k∈N

|xk|p
)1/p

= |α| ‖x‖p. (2.2.18)

Thus for x = (xk)k∈N ∈ ℓp(N) and α ∈ K, we have ‖αx‖p = |α| ‖x‖p < ∞ and hence

α x ∈ ℓp(N).

The Minkowski inequality ensures that for any x = (xk)k∈N and y = (yk)k∈N in ℓp(N) the

sequence x+ y = (xk + yk)k∈N satisfies

‖x+ y‖p =

(∑

k∈N

|xk + yk|p
)1/p

≤
(∑

k∈N

|xk|p
)1/p

+

(∑

k∈N

|yk|p
)1/p

= ‖x‖p + ‖y‖p. (2.2.19)

Hence ‖x+ y‖p ≤ ‖x‖p + ‖y‖p <∞, and x+ y = (xk + yk)k∈N also belongs to ℓp(N).

We have verified that ℓp(N) is closed under addition and scalar multiplication, and hence ℓp(N)

is subspace of ℓ(N) and thus itself a linear space.

For 1 < p <∞, we have now to verify that ‖ · ‖p satisfies the four norm properties:

(i) Since |xk|p ≥ 0 for all k ∈ N, we have ‖x‖p ≥ 0 for any x = (xk)k∈N in ℓp(N).
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(ii) For x = (0)k∈N, we have clearly ‖x‖p = 0. Now assume that for some x = (xk)k∈N ∈ ℓp(N)

0 = ‖x‖p =

(∑

k∈N

|xk|p
)1/p

⇔ 0 = ‖x‖p
p =

∑

k∈N

|xk|p,

Then we can conclude that |xk|p = 0 for all k ∈ N and hence xk = 0 for all k ∈ N, that is,

x = (xk)k∈N is the zero sequence. This shows non-degeneracy.

(iii) Let x = (xk)k∈N ∈ ℓp(N) and α ∈ K. From (2.2.18) we see then that ‖αx‖p = |α| ‖x‖p.

(iv) From (2.2.19) the triangle inequality holds: for all x, y ∈ ℓp(N),

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

As ℓp(N) is a linear space and as ‖ · ‖p has all the properties of a norm, the space ℓp(N) with

‖ · ‖p is a normed linear space. 2

The proofs of the next two theorems can be given analogously to the proof of Theorem 2.20

and are left as an exercise. However, for showing the non-degeneracy of the norms, you need

to know about the Lebesgue integral, Lebesgue measurable functions, and sets of Lebesgue

measure zero; otherwise you will not be able to verify this property.

Theorem 2.21 (Lp([a, b]) with ‖ · ‖Lp([a,b]) is a normed linear space)

Let 1 ≤ p <∞. The space Lp([a, b]) with the function ‖ · ‖Lp([a,b]) : Lp([a, b]) → R,

‖f‖Lp([a,b]) :=

(∫ b

a

|f(x)|p dx

)1/p

, (2.2.20)

is a normed linear space.

The space L∞([a, b]) with the function ‖ · ‖L∞([a,b]) : L∞([a, b]) → R,

‖f‖L∞
:= ess−sup

x∈[a,b]

|f(x)|,

is a normed linear space.

Theorem 2.22 (Lp(R) with ‖ · ‖Lp(R) is a normed linear space)

Let 1 ≤ p <∞. The space Lp(R) with the function ‖ · ‖Lp(R) : Lp(R) → R,

‖f‖Lp(R) :=

(∫

R

|f(x)|p dx

)1/p

, (2.2.21)

is a normed linear space.

The space L∞(R) with the function ‖ · ‖L∞(R) : L∞(R) → R,

‖f‖L∞(R) := ess−sup
x∈R

|f(x)|,

is a normed linear space.
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Exercise 20 Show that the spaces Lp([a, b]), 1 < p <∞, with the norm ‖ · ‖Lp([a,b]) are normed

linear spaces. You do not have to show the non-degeneracy of the norm, as this requires knowl-

edge of the Lebesgue integral.

2.3 Open and Closed Sets, and Separable Spaces

In this section, X is always a normed linear space with norm ‖ · ‖ : X → R. We mention

at the beginning that, in analogy to the R3 with the Euclidean norm, we should think of

dist(x, y) := ‖x− y‖, x, y ∈ X,

as a measure for the distance between x and y. In fact, dist(x, y) := ‖x − y‖ is a metric or

distance function.

Definition 2.23 (open ball, closed ball, and sphere in a normed linear space)

Let X be a normed linear space with norm ‖ · ‖ : X → R.

(i) The open ball centred at x ∈ X with radius r is defined by

B(x; r) := {y ∈ X : ‖y − x‖ < r} .

(ii) The closed ball centred at x ∈ X with radius r is defined by

B̃(x; r) := {y ∈ X : ‖y − x‖ ≤ r} .

(iii) The sphere centred at x ∈ X with radius r is defined by

S(x; r) := {y ∈ X : ‖y − x‖ = r} .

Sometimes we call the open ball B(x; r) an r-neighbourhood of the point x.

For getting an intuition of the statements given in this and the following sections it is useful

to keep the standard example of the normed linear vector space R2 with the Euclidean norm

‖x‖2 = (
∑2

k=1 |xk|2)1/2 =
√

|x1|2 + |x2|2 in mind, since we can easily draw pictures in this case.

In fact, for getting an intuitive understanding of the concepts it is extremely useful to draw

pictures to visualise the concepts whenever possible.

Example 2.24 (open and closed ball and sphere in R2)

Consider R2 endowed with the p-norms.

(a) If p = 1, then the open ball

B(0; 1) =
{
x = (x1, x2)

T ∈ R2 : ‖x‖1 = |x1| + |x2| < 1
}

is the interior of the square in the left picture in Figure 2.1. The sphere S(0; 1) is the

boundary of the square, and the closed ball B̃(0; 1) is the square including its boundary.
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(b) If p = 2, then the open ball

B(0; 1) =
{
x = (x1, x2)

T ∈ R2 : ‖x‖2 =
√

|x1|2 + |x2|2 < 1
}

is the interior of the disc in the middle picture in Figure 2.1. The sphere S(0; 1) is the circle,

and the closed ball B̃(0; 1) is the disc including its boundary.

(c) If p = ∞, then the open ball

B(0; 1) =
{
x = (x1, x2)

T ∈ R2 : ‖x‖∞ = max
{
|x1|, |x2|

}
< 1
}

is the interior of the square in the right picture in Figure 2.1. The sphere S(0; 1) is the

boundary of the square, and the closed ball B̃(0; 1) is the square including its boundary. 2

We see in the previous example that balls in normed linear spaces are not necessarily ‘round’

in the geometric sense.

−1

(a) (c)(b)

1

1

−1

−1 1

1

−1−1 1

−1

1

Figure 2.1: The unit ball B(0; 1) in R2 with respect to the norm ‖ · ‖p, where p = 1 in (a),

p = 2 in (b), and p = ∞ in (c).

Definition 2.25 (bounded and unbounded set)

Let X be a normed linear space. A subset M ⊂ X is said to be bounded if there is an

x ∈ X and a real number r > 0 such that M ⊂ B(x; r). If a subset M ⊂ X is not bounded,

we call it unbounded.

It is intuitively clear that if M is bounded, then for any y ∈ X there exists a number ry such

that M ⊂ B(y; ry). Indeed, if M ⊂ B(x; rx), and if y ∈ X is any other point, then from the

triangle inequality

‖z − y‖ = ‖(z − x) + (x− y)‖ ≤ ‖z − x‖ + ‖x− y‖ < rx + ‖x− y‖ =: ry for all z ∈M.

Hence with ry := rx + ‖x− y‖, we have M ⊂ B(y; ry). In particular, if we choose x = 0, then

we have the following characterisation of a bounded set: M ⊂ X is bounded if there exists

r > 0 such that ‖x‖ < r for all x ∈M .
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Example 2.26 (bounded and unbounded sets)

(a) In any normed linear space X, open balls B(x; r), closed balls B̃(x; r), and spheres S(x; r)

are bounded.

(b) In R2 with the Euclidean norm ‖ · ‖2, the set M = {(x, 0)T ∈ R2 : x > 0} is not bounded.

(c) In R2 with the Euclidean norm ‖ · ‖2, the set M = {(t, sin t)T : t ∈ [0, π]} is bounded.

(d) In R2 with the Euclidean norm ‖ · ‖2, the set M = {(t, sin t)T : t ∈ R} is not bounded.

(e) In C, with the absolute value norm ‖z‖ := |z| the upper half plane M = {z ∈ C : ℑ(z) ≥ 0}
is not bounded.

(f) The set N is not bounded in the real numbers R with the absolute value norm ‖x‖ := |x|.
(g) In the space C(R) of continuous complex-valued functions on R with the supremum norm

‖f‖C(R) = sup
x∈R

|f(x)|,

the set M = {sin(kx), cos(mx) : k,m ∈ N0} is bounded. 2

Definition 2.27 (interior point and open and closed set)

Let X be a normed linear space with norm ‖ · ‖.
(i) Let M be a subset of X. A point x ∈ M is called an interior point of M , if there

exists an r > 0 such that the open ball B(x; r) is contained in M .

(ii) A subset M ⊂ X is said to be open if every point in M is an interior point of M , that

is, if for each x ∈ M there exists an r > 0 (depending on x) such that the open ball

B(x; r) ⊂M .

(iii) A subset M ⊂ X is said to be closed if its complement M c := X \M is open.

Example 2.28 (interior points and closed and open sets)

(a) In R with the absolute value norm ‖x‖ := |x|, the open interval (a, b) = {x ∈ R : a < x < b}
is open and the closed interval [a, b] = {x ∈ R : a ≤ x ≤ b} is closed. The half-open intervals

(a, b] and [a, b) are neither open nor closed. The interior points of (a, b), [a, b], (a, b] and

[a, b) are the same and they are all points in (a, b).

(b) In any normed linear space, an open ball B(x; r) is open and a closed ball B̃(x; r) is closed.

The sphere S(x; r) is also closed.

(c) Any normed linear space X and the empty set ∅ are both open and closed.

(d) A straight line in R2, endowed with the Euclidean norm ‖ · ‖2, is closed.

(e) The set of constant functions in C([a, b]) is closed. 2

Exercise 21 Let X be a normed linear space with norm ‖ · ‖ : X → R. Show that the open ball

B(x; r) = {y ∈ X : |, ‖y − x‖ < r}
is open and that the closed ball

B̃(x; r) = {y ∈ X : |, ‖y − x‖ ≤ r}
is closed.
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Lemma 2.29 (union of open sets and intersection of closed sets)

Let X be a normed linear space with norm ‖ · ‖.
(i) The union of (finitely many or infinitely many) open sets is open.

(ii) The intersection of (finitely many or infinitely many) closed sets is closed.

Exercise 22 Proof Lemma 2.29.

Definition 2.30 (accumulation point)

Let X be a normed linear space with norm ‖ · ‖, and let M ⊂ X. A point x0 ∈ X is called

an accumulation point of M if every neighbourhood of x0 (that is, every ball B(x0; r)

centred at x0) contains at least one point y ∈M distinct from x0.

We note that an accumulation point of a set M ⊂ X may belong to M or not!

Definition 2.31 (closure of a subset)

Let X be a normed linear space with norm ‖ · ‖, and let M ⊂ X. The set consisting of the

points of M and the accumulation points of M is called the closure of M and is denoted

by M .

Example 2.32 (accumulation points and closure)

(a) Consider R with the absolute value norm ‖x‖ := |x|. The set of accumulation points of the

intervals (a, b), [a, b], (a, b], and [a, b) is the same and is given by [a, b]. So the closure of

each of these intervals is [a, b].

(b) Let X be a normed linear space. The set of accumulation points of the open ball B(x; r) is

the closed ball B̃(x; r), and this closed ball is also the closure of B(x; r).

(c) The set of integers N as a subset of R with the absolute value norm ‖x‖ := |x| is closed. N

has no interior points and no accumulation points. The closure of N is N itself. 2

Theorem 2.33 (characterisation of the closure of a set)

Let X be a normed linear space with norm ‖ · ‖, and let M ⊂ X. The closure M of M is

the smallest closed set containing M . In other words, for any closed set A with M ⊂ A one

has M ⊂ A. Equivalently,

M =
⋂

M⊂A,
A⊂X is closed

A. (2.3.1)

We note that, from Lemma 2.29, it is clear that the set on the right-hand side of (2.3.1) is

closed.

Proof of Theorem 2.33: We need to prove first of all that M is closed. We shall do it in two

steps.
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Step 1: First we show that M contains all its accumulation points. Let x0 ∈ X be an accumu-

lation point of M . Then by definition for any ǫ > 0 there is a point y ∈ M distinct from x0

such that ‖x0 − y‖ < ǫ/2. By definition of M the point y either belongs to the set M , in which

case we set z = y, or y is an accumulation point of M . In the latter case there exists a z ∈M

distinct from y such that ‖z − y‖ < ‖x0 − y‖/2, and therefore from the triangle inequality

‖x0 − z‖ ≤ ‖x0 − y‖ + ‖y − z‖ < ‖x0 − y‖ +
1

2
‖x0 − y‖ =

3

2
‖x0 − y‖ < 3 ǫ

4
.

Note that z is distinct from x0 since from the lower triangle inequality

‖x0 −z‖ ≥
∣∣‖x0 −y‖−‖y−z‖

∣∣ ≥ ‖x0 −y‖−‖y−z‖ ≥ ‖x0 −y‖−
1

2
‖x0 −y‖ =

1

2
‖x0 −y‖ > 0.

Thus for a given ǫ we have found a vector z ∈ M distinct from x0 such that z ∈ B(x0; 3ǫ/4).

This shows that x0 is an accumulation point ofM and therefore belongs toM . Thus M contains

all its accumulation points.

Step 2: Now we prove thatM is closed, or, which is the same, that the complement M
c
= X\M

is open. Suppose that it is not true, that is, suppose that M
c

is not open. Then there is a

x0 ∈ M
c

such that for any ǫ > 0 one can find a vector y ∈ B(x0, ǫ) such that y /∈ M
c
. Since

y ∈ M this implies that x0 is an accumulation point of M and by Step 1 must belong to M .

This contradicts the assumption x0 ∈M
c
. Therefore our assumption that M

c
was not open is

wrong, and we have verified that M
c

is open and M is closed.

Now we are in a position to complete the proof of the theorem. Since M is closed and contains

M , we obviously have 


⋂

M⊂A,
A⊂X is closed

A


 ⊂M.

Suppose that the other inclusion ⊃ is not true. Then for some closed set A with M ⊂ A there

is a point x0 ∈ M \M such that x0 /∈ A. Then x0 ∈ Ac. As the set Ac is open, there is a

number ǫ > 0 such that B(x0; ǫ) ⊂ Ac. Remembering that M ⊂ A and hence Ac ⊂ M c, we

conclude that B(x0; ǫ) ⊂M c as well. Therefore x0 cannot be an accumulation point of M which

contradicts the fact that x0 ∈ M \M . Hence our assumption was wrong and the inclusion ⊃
is also true. 2

The next definition is very important.

Definition 2.34 (dense subset and separable normed linear space)

Let X be a normed linear space with norm ‖ · ‖.
(i) A subset M of X is said to be dense in X if M = X.

(ii) The space X is said to be separable if it has a countable subset M that is dense in

X. (A set M ⊂ X is countable, if there exists a one-to-one correspondence between

the elements of M and the positive integers.)
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From the definitions given above, we can conclude that, ifM is dense inX, then every element in

X is either in M or is an accumulation point of M . Hence for every x ∈ X every neighbourhood

B(x; r) will contain at least one element of M .

Example 2.35 (separable spaces)

(a) The space R with ‖x‖ := |x| is separable, because the set of rational numbers Q is countable

and is dense in R.

(b) The set of numbers whose real and imaginary parts are both rational, is countable and dense

in C with the absolute value norm ‖z‖ := |z|. Therefore C with the absolute value norm

‖z‖ := |z| is separable.

(c) The Euclidean space Rd with the Euclidean norm ‖ · ‖2 is separable, because the space Qd

is countable and dense in Rd. 2

Exercise 23 Show that R with the absolute value norm ‖x‖ := |x| is separable.

Checking whether a space is separable or not is not always trivial, and we will encounter more

complicated examples in the next two lemmas.

Lemma 2.36 (ℓp(N) is separable for 1 ≤ p <∞)

For p satisfying 1 ≤ p <∞, the sequence space ℓp(N) with the norm

‖x‖p =

(∑

k∈N

|xk|p
)1/p

, x = (xk)k∈N,

is separable.

Proof of Lemma 2.36: The proof is given in three steps.

Step 1: We first show that the set of all finite sequences is dense in ℓp(N). Let M be the subset

of ℓp(N) consisting of the sequences of the form

x = (x1, x2, . . . , xn, 0, 0, . . . ), n ∈ N.

We need to show that for every fixed element y = (yk)k∈N ∈ ℓp(N) and every ǫ > 0 the open

ball B(y; ǫ/2) contains at least one element from M . For n ∈ N, define y(n) ∈ M as follows:

y(n) := (y1, y2, . . . , yn, 0, 0 . . . ).

Then

y − y(n) = (0, 0, . . . , 0, yn+1, yn+2, . . . ).

As y ∈ ℓp(N), we have

‖y‖p =

(∑

k∈N

|yk|p
)1/p

<∞,
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that is, the infinite sum in the parentheses converges. Hence for every ǫ > 0 there exists and

N = N(ǫ) ∈ N such that

(
∞∑

k=n+1

|yk|p
)1/p

<
ǫ

2
for all n ≥ N,

and thus

‖y − y(n)‖p =

(
∞∑

k=n+1

|yk|p
)1/p

<
ǫ

2
for all n ≥ N.

In particular, we have for y(N) ∈M the estimate

‖y − y(N)‖ < ǫ

2
. (2.3.2)

Step 2: Let an arbitrary y = (yk)k∈N be chosen from ℓp(N) and let y(N) be constructed as in

Step 1 such that (2.3.2) holds true. Then we can approximate every non-zero component yk,

k = 1, 2, . . . , N of the element y(N) by a rational number zk in such a way that |yk − zk| <
(ǫ/2)/N1/p for k = 1, 2, . . . , N . Then for z = (z1, z2, . . . , zN , 0, 0, . . .)

‖y(N) − z‖p =

(∑

k∈N

|y(N)
k − zk|p

) 1
p

=

(
N∑

k=1

|yk − zk|p
) 1

p

≤
(

N∑

k=1

(ǫ/2)p

N

) 1
p

=
ǫ

2
. (2.3.3)

Step 3: Now use the triangle in equality (that is, the Minkowski inequality for ℓp(N)) to check

that, from (2.3.2) and (2.3.3),

‖y − z‖p = ‖(y − y(N)) + (y(N) − z)‖p ≤ ‖y − y(N)‖p + ‖y(N) − z‖p <
ǫ

2
+
ǫ

2
= ǫ.

As y ∈ ℓp(N) and ǫ > 0 were arbitrary, we have shown that

A :=

∞⋃

n=1

{z = (z1, z2, . . . , zn, 0, 0, . . . ) : zj ∈ Q}

is dense in ℓp(N). Since Qn is countable, the set A is countable. Hence ℓp(N) is separable. 2

Lemma 2.37 (ℓ∞(N) is not separable)

The sequence space ℓ∞(N) with the norm

‖x‖∞ = sup
k∈N

|xk|, x = (xk)k∈N.

is not separable.

Exercise 24 Prove Lemma 2.37. (Hint: Give a proof by contradiction. Assume that ℓ∞(N)

was separable. Then there exists a countable dense subset M = {x(1), x(2), . . .}. Now use this

set M to construct an element in ℓ∞(N) which is not in M .)
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2.4 Convergence and Completeness

In this section we introduce the notions of convergence of sequences and completeness of a

normed linear space. Below (xn)n∈N, where xn ∈ X, denotes a sequence in the space X. (Do

not confuse the notation with the elements of the ℓp(N) spaces.)

Definition 2.38 (convergent/divergent sequence and limit)

Let X be a normed linear space with norm ‖ · ‖ : X → K.

(i) A sequence (xn)n∈N ⊂ X is said to converge (or to be convergent) if there exists

an x ∈ X such that

lim
n→∞

‖x− xn‖ = 0. (2.4.1)

(Equivalently, (xn)n∈N ⊂ X converges if for every ǫ > 0 there exists an N = N(ǫ) such

that ‖xn − x‖ < ǫ for all n ≥ N .) The element x in (2.4.1) is then called the limit of

the sequence (xn)n∈N. We also write xn → x as n→ ∞ or x = limn→∞ xn, and we say

(xn)n∈∞ converges to x.

(ii) A sequence is said to be divergent if it does not converge.

We note some consequences:

From the lower triangle inequality

∣∣‖xn‖ − ‖x‖
∣∣ ≤ ‖xn − x‖;

hence if xn → x for n→ ∞, then also ‖xn‖ → ‖x‖ for n→ ∞.

If xn → x and yn → y for n→ ∞, then (xn + yn) → x+ y for n→ ∞. Indeed,

∥∥(xn + yn) − (x+ y)
∥∥ = ‖(xn − x) + (yn − y)‖ ≤ ‖xn − x‖ + ‖yn − y‖ → 0 as n→ ∞.

Definition 2.39 (Cauchy sequence)

Let X be a normed linear space with norm ‖ · ‖ : X → K. A sequence (xn)n∈N in X is said

to be a Cauchy sequence if for every ǫ > 0 there exists an N = N(ǫ) ∈ N such that

‖xn − xm‖ < ǫ for all m,n ≥ N.

Example 2.40 (convergent sequence in R3)

In R3 with the Euclidean norm ‖x‖2 = (
∑3

k=1 |xk|2)1/2 the sequence (x(n))n∈N, defined by

x(n) = (1/n, e1/n, 2)T converges to x = (0, 1, 2)T . Indeed

‖x(n) − x‖2 = ‖(1/n, e1/n − 1, 0)T‖2 =
√

(1/n)2 + (e1/n − 1)2 + 0
1/2

→ 0 as n→ ∞.

It is easily checked that this sequence is also a Cauchy sequence. 2
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Example 2.41 (convergent sequence in C([a, b]))

The sequence (fn)n∈N, defined by fn(x) := exp(x+ x/n) in C([0, 1]) with the supremum norm

‖f‖C([0,1]) := sup
x∈[0,1]

|f(x)|

converges uniformly on [0, 1] to the function f(x) := exp(x). Indeed,

0 ≤ |fn(x) − f(x)| =
∣∣ex+x/n − ex

∣∣ =
∣∣ex (ex/n − 1)

∣∣ ≤ e (e1/n − 1) for all x ∈ [0, 1].

As e (e1/n − 1) → 0 as n→ ∞, we find from the sandwich theorem that

0 ≤ lim
n→∞

sup
x∈[0,1]

|fn(x) − f(x)| ≤ lim
n→∞

e (e1/n − 1) = 0,

and hence limn→∞ ‖fn − f‖C([0,1]) = 0. 2

The notions of accumulation points and closure introduced in the previous section can also be

described using the notion of convergent sequences. For example, the following is equivalent to

Definitions 2.30 and 2.34:

Lemma 2.42 (accumulation point, dense subset characterised with sequences)

Let X be a normed linear space with norm ‖ · ‖ : X → K.

(i) A point x0 ∈ X is an accumulation point of a subset M if and only if there exists

a sequence (xn)n∈N in M such that xn 6= x0 and xn → x0 as n→ ∞.

(ii) A subset M is dense in X if for each x ∈ X there is a sequence (xn)n∈N in M such

that xn → x as n→ ∞.

Exercise 25 Prove Lemma 2.42.

Lemma 2.43 (properties of convergent sequences)

Let X be a normed linear space with norm ‖ · ‖ : X → K. Let (xn)n∈N be a convergent

sequence in X. Then the following holds true:

(i) The sequence (xn)n∈N is bounded, that is, there exists r > 0 such that ‖xn‖ ≤ r

for all n ∈ N (or equivalently, there exists some y ∈ X and some ry > 0 such that

xn ∈ B(y; ry) for all n ∈ N).

(ii) The limit of (xn)n∈N is unique.

(iii) The sequence (xn)n∈N is a Cauchy sequence.

Proof of Lemma 2.43: Let x ∈ X be a limit of the convergent sequence (xk)k∈N, that is,

limn→∞ ‖xn − x‖ = 0.

(i) By the definition of convergence, for any ǫ > 0 there exists N = N(ǫ) ∈ N such that

‖x− xn‖ < ǫ for all n ≥ N . Thus

‖x− xn‖ ≤ max

{
ǫ, max

m=1,...,N−1
‖x− xm‖

}
, for all n ∈ N,
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and hence xn ∈ B(x; r) with

r := max

{
ǫ, max

m=1,...,N−1
‖x− xm‖

}
+

1

2
.

Thus (xn)n∈N is bounded.

(ii) To prove uniqueness of the limit, suppose that there are two limits x and x̃. Given ǫ > 0,

there exist N1 = N1(ǫ) and N2 = N2(ǫ) such that

‖xn − x‖ < ǫ

2
for all n ≥ N1 and ‖xn − x̃‖ < ǫ

2
for all n ≥ N2.

Thus with N = max{N1, N2},

‖xn − x‖ < ǫ

2
and ‖xn − x̃‖ < ǫ

2
for all n ≥ N.

Consequently, from the triangle inequality

0 ≤ ‖x− x̃‖ = ‖(x− xn) + (xn − x̃)‖ ≤ ‖x− xn‖ + ‖xn − x̃‖ < ǫ

2
+
ǫ

2
= ǫ for all n ≥ N.

As ǫ > 0 was arbitrary, this shows that x = x̃. Hence the limit is unique.

(iii) By the definition of convergence, for every ǫ > 0 there exists an N = N(ǫ) ∈ N such that

‖x− xn‖ < ǫ/2 for all n ≥ N . Thus, using the triangle inequality,

‖xn − xm‖ = ‖(xn − x) + (x− xm)‖ ≤ ‖xn − x‖ + ‖xm − x‖ < ǫ

2
+
ǫ

2
= ǫ for all m,n ≥ N.

This shows that (xn)n∈N is a Cauchy sequence.

This concludes the proof. 2

Exercise 26 Let X be a normed linear space with norm ‖·‖ : X → R. Show that every Cauchy

sequence in X is bounded.

By Lemma 2.43 every convergent sequence (xn)n∈N in a normed linear space is a Cauchy se-

quence. It is also easily shown that every Cauchy sequence is bounded. However, it is in

general not true that every Cauchy sequence is convergent! Whether this is true (or

not) depends on the particular normed linear space.

Definition 2.44 (complete normed linear space = Banach space)

A normed space X is said to be complete if every Cauchy sequence in X is convergent. A

complete normed linear space is also called a Banach space.

Theorem 2.45 (ℓp(N) is complete for 1 ≤ p ≤ ∞)

Let 1 ≤ p ≤ ∞. The space ℓp(N), with the p-norm (2.2.16) for 1 ≤ p <∞ and (2.2.17) for

p = ∞, is complete, that is, it is a Banach space.
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Proof of Theorem 2.45: We give the proof only for the case that 1 ≤ p < ∞. The case

p = ∞ is left as an exercise.

Let 1 ≤ p < ∞. Let (x(n))n∈N, where x(n) := (x
(n)
k )k∈N be an arbitrary Cauchy sequence in

ℓp(N). Then for any ǫ > 0 there exists a number N = N(ǫ) ∈ N such that

‖x(n) − x(m)‖p < ǫ, for all n,m ≥ N. (2.4.2)

For every j ∈ N the sequence (x
(n)
j )n∈N of jth entries of the x(n) = (x

(n)
k )k∈N is a Cauchy

sequence of numbers in K because (2.4.2) implies that for 1 ≤ p <∞

|x(n)
j −x(m)

j | =
(
|x(n)

j −x(m)
j |p

)1/p ≤
(

∞∑

k=1

|x(n)
k − x

(m)
k |p

)1/p

= ‖x(n)−x(m)‖p < ǫ for allm,n ≥ N.

Since K = C and K = R with the absolute value norm ‖ · ‖ := | · | are complete, the Cauchy

sequence (x
(n)
j )n∈N has a limit xj = limn→∞ x

(n)
j in K. It remains to show that the element

x := (x1, x2, . . . , xj , . . .) = (xj)j∈N belongs to ℓp(N) and that x is the limit of the ℓp(N) Cauchy

sequence (x(n))n∈N. Then we have shown that the Cauchy sequence {x(n)}n∈N converges in

ℓp(N). Since (x(n))n∈N was an arbitrary Cauchy sequence in ℓp(N), this shows that ℓp(N) is

complete.

We start by showing x = (xj)j∈N ∈ ℓp(N). Since a Cauchy sequence is bounded, there exists an

M > 0 such that ‖x(n)‖p ≤M for all n ∈ N. Hence, we have

(
k∑

j=1

|x(n)
j |p

)1/p

≤ ‖x(n)‖p ≤M for all k ∈ N and all n ∈ N.

Since this estimate is uniform in k ∈ N and n ∈ N, and since limn→∞ x
(n)
j = xj for all j ∈ N,

we can first let n tend to infinity to derive

(
k∑

j=1

|xj |p
)1/p

= lim
n→∞

(
k∑

j=1

|x(n)
j |p

)1/p

≤M for all k ∈ N.

The sequence (sk)k∈N of real numbers sk :=
(∑k

j=1 |xj |p
)1/p

is increasing and bounded from

above by M . Hence we know that it converges and that the limit is also bounded by M , that

is

‖x‖p =

(
∞∑

j=1

|xj|p
)1/p

= lim
k→∞

(
k∑

j=1

|xj|p
)1/p

≤ M.

Thus x = (xj)j∈N is in ℓp(N).

Finally, to see that (x(n))n∈N converges to x, we have to show that for every ǫ > 0 there exists

an N = N(ǫ) such that ‖x − x(n)‖p < ǫ for n ≥ N . As (x(n))n∈N is a Cauchy sequence, given
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ǫ > 0, there exists an N = N(ǫ) such that ‖x(n) − x(m)‖p < ǫ for all n,m ≥ N . This means in

particular, that we have for any k ∈ N:

(
k∑

j=1

|x(n)
j − x

(m)
j |p

)1/p

≤ ‖x(n) − x(m)‖p ≤ ǫ for all n,m ≥ N.

Keeping n and k fixed and letting m tend to infinity yields

(
k∑

j=1

|x(n)
j − xj |p

)1/p

≤ ǫ for all n ≥ N and all k ∈ N,

because limn→∞ x
(n)
j = xj for j = 1, 2, . . . , k. Since this holds uniformly for all k ∈ N we can let

k tend to infinity to find ‖x(n)−x‖p ≤ ǫ for n ≥ N , which shows that (x(n))n∈N converges to x. 2

We close this section by giving some more examples.

Example 2.46 (C([a, b]) with the supremum norm is complete)

Let C([a, b]) be the space of continuous complex-valued functions on the closed interval [a, b]

with the supremum norm

‖f‖C([a,b]) := sup
x∈[a,b]

|f(x)|.

Convergence in this space is uniform convergence on [a, b], and the space C([a, b]) with

‖ · ‖C([a,b]) is complete. This is not trivial to show; the crucial point is to show that any uniform

Cauchy sequence of continuous functions converges uniformly on [a, b] to a continuous function.

(See ’Further Analysis‘ for details.) 2

Example 2.47 (C([a, b]) with norm ‖ · ‖Lp
, 1 ≤ q <∞ is not complete)

Let C([a, b]) be the space of functions continuous complex-valued functions on the closed interval

[a, b] endowed with the norm

‖f‖Lp([a,b]) =

(∫ b

a

|f(x)|p dx

)1/p

,

where 1 ≤ p < ∞. This space is not complete! To show this, find a sequence of continuous

functions that is a Cauchy sequence with respect to ‖·‖Lp([a,b]) but whose limit is not in C([a, b]),

that is, whose limit is not continuous. 2

The last two examples show that the notion of completeness depends on both the space and on

the definition of the norm. To achieve completeness in Example 2.47 above, we have to extend

the space C([a, b]) to the larger space Lp([a, b]).

Exercise 27 Show that the linear space C([0, 2]) of continuous complex-valued functions with

the norm

‖f‖L1([0,2]) =

∫ 2

0

|f(x)| dx
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is not complete. (Hint: Consider the following sequence of continuous functions: (fn)n∈N

fn(x) :=

{
xn if x ∈ [0, 1],

1 if x ∈ (1, 2].

Show that this sequence is a Cauchy sequence with respect to the norm ‖ · ‖L1([0,2]). Find the

pointwise limit of this sequence and show that the sequence converges in the ‖ · ‖L1([0,2]) norm

to the pointwise limit. Draw some conclusions.)

Exercise 28 Show that the sequence space ℓ∞(N) with the norm (2.2.17) is complete.

Theorem 2.48 (Lp([a, b]) and Lp(R), where 1 ≤ p <∞, are complete)

Let 1 ≤ p <∞.

(i) The space Lp([a, b]), endowed with the norm ‖·‖Lp([a,b]), defined by (2.2.20), is complete.

(ii) The space Lp(R), endowed with the norm ‖ · ‖Lp(R), defined by (2.2.21), is complete.

(iii) The set of continuous functions is dense in Lp([a, b]).

The proof of this lemma is non-trivial and demands a deep knowledge of the Lebesgue integral.

Exercise 29 Consider the vector space Π([0, 1]) of all polynomials on the interval [0, 1] with

real coefficients, endowed with the supremum norm

‖f‖C[0,1] = sup
x∈[0,1]

|f(x)|.

Is this space complete or not? Give a proof of your answer! (Hint: Make use of your knowledge

about the convergence of power series.)

Exercise 30 Let X be a normed linear space and let M be a closed subset of X. Show that

any x ∈ X \M has non-zero distance from M , that is,

dist(x,M) := inf
y∈M

‖x− y‖ > 0.



Chapter 3

Inner Product Spaces

Inner product spaces are a special case of normed linear spaces, which have a norm that is

induced by an inner product. In particular, complete inner product spaces are called Hilbert

spaces and these are the main concern of this chapter. Examples of Hilbert spaces are Rn and

Cn, and ℓ2(N) and L2([a, b]), L2(R), each endowed with an appropriate inner product, of course.

The concept of an inner product space, which is familiar from linear algebra, will in this course

primarily be used for infinite-dimensional spaces, namely the sequence space ℓ2(N) and

the function spaces L2([a, b]) and L2(R). For these spaces we will introduce a countable or-

thonormal basis. In this chapter we encounter two orthonormal bases as examples, which

will play a crucial role in this course: (a) the complex trigonometric trigonometric ba-

sis polynomials which provide an orthonormal basis for the space L2([−π, π]) and (b) the

Haar scaling function and the Haar wavelet which will later-on be used to construct an

orthonormal basis for L2(R).

In Section 3.1 we introduce inner product spaces and discuss their basic properties and

the concept of orthogonality. An inner product space is, in particular, also a normed linear

space with a norm that is induced by an inner product. This means that all the terminology

discussed in the last chapter for normed linear spaces applies to inner product spaces as well.

A complete inner product space is called a Hilbert space.

In Section 3.2 we discuss the concepts of distance, best approximation, and (orthogonal)

projection. In Section 3.3 we return to the concept of orthogonality and consider orthonormal

sets in a Hilbert space. In particular, we will focus on infinite countable orthonormal sets

in an infinite-dimensional inner product space.

In Section 3.4 we introduce the concept of a Schauder basis of an infinite dimensional normed

linear space. If we have a Hilbert space and if such a Schauder basis consists of orthonormal

elements, then the inner product space has an orthonormal (Schauder) basis (or a com-

plete orthonormal set). An orthonormal set M ⊂ H is an orthonormal basis in a Hilbert

space H if spanM is dense in H . We will see that an orthonormal basis has many beautiful

and useful properties.

33
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3.1 Definitions and Properties of Inner Product Spaces

This section focusses on concepts that are known from linear algebra: an inner product for a

linear space, the norm induced by an inner product and orthogonality. While this appears to

be nothing new, the difference to linear algebra is that we will apply these concepts for infinite-

dimensional spaces and (infinite-dimensional) spaces of functions. You should make sure that

you do the exercises to familiarise yourself with this framework.

Definition 3.1 (inner product and complex inner product space)

Let X be a complex linear space over K = C with the vector addition ⊕ and the

scalar multiplication ⊙. An inner product (or scalar product) on X is a function

〈·, ·〉 : X ×X → C, which associates to every ordered pair of elements x, y ∈ X a scalar in

K = C, possessing the following properties:

(i) Linearity:

〈x⊕ y, z〉 = 〈x, z〉 + 〈y, z〉 for all x, y, z,∈ X. (3.1.1)

(ii) Homogeneity:

〈α⊙ x, y〉 = α 〈x, y〉 for all x, y ∈ X and all α ∈ C. (3.1.2)

(iii) Anti-symmetry:

〈x, y〉 = 〈y, x〉 for all x, y ∈ X. (3.1.3)

(iv) Non-degeneracy:

〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0. (3.1.4)

A complex linear space X with an inner product 〈·, ·〉 is called a complex inner product

space (or a complex pre-Hilbert space).

Combining the properties (3.1.1), (3.1.2) and (3.1.3), we see that for all x, y ∈ X and all

α, β ∈ C

〈α⊙ x⊕ β ⊙ y, z〉 = α 〈x, z〉 + β 〈y, z〉, (3.1.5)

〈x, α⊙ y ⊕ β ⊙ z〉 = α 〈x, y〉 + β 〈x, z〉. (3.1.6)

Due to these properties the inner product is said to be sesqui-linear, which means ‘11
2
-linear’.

Here is an example of a complex inner product space.

Example 3.2 (complex inner product space Cd)

The complex linear space Cd with the inner product

〈x,y〉2 :=
d∑

k=1

xk yk, x = (x1, x2, . . . , xd)
T , y = (y1, y2, . . . , yd)

T ∈ Cd, (3.1.7)

is a complex inner product space. 2
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In a real linear space over the field K = R with an inner product the conjugation is obsolete

and we obtain the following definition.

Definition 3.3 (inner product and real inner product space)

Let X be a real linear space over K = R with the vector addition ⊕ and the scalar multipli-

cation ⊙. An inner product (or scalar product) on X is a function 〈·, ·〉 : X ×X → R,

which associates to every ordered pair of elements x, y ∈ X a scalar in K = R, possessing

the following properties:

(i) Linearity:

〈x⊕ y, z〉 = 〈x, z〉 + 〈y, z〉 for all x, y, z,∈ X. (3.1.8)

(ii) Homogeneity:

〈α⊙ x, y〉 = α 〈x, y〉 for all x, y ∈ X and all α ∈ R. (3.1.9)

(iii) Symmetry:

〈x, y〉 = 〈y, x〉 for all x, y ∈ X. (3.1.10)

(iv) Non-degeneracy:

〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0. (3.1.11)

A real linear space X with an inner product 〈·, ·〉 is called a real inner product space (or

a real pre-Hilbert space).

Combining the properties (3.1.8), (3.1.9) and (3.1.10), we see that for all x, y ∈ X and all

α, β ∈ R

〈α⊙ x⊕ β ⊙ y, z〉 = α 〈x, z〉 + β 〈y, z〉, (3.1.12)

〈x, α⊙ y ⊕ β ⊙ z〉 = α 〈x, y〉 + β 〈x, z〉. (3.1.13)

Due to these properties the inner product is said to be bi-linear, which means ‘linear in each

argument’.

Here is an example of a real inner product space.

Example 3.4 (real inner product space Rd)

The real linear space Rd with the Euclidean inner product

〈x,y〉2 :=

d∑

k=1

xk yk, x = (x1, x2, . . . , xd)
T , y = (y1, y2, . . . , yd)

T ∈ Rd, (3.1.14)

is a real inner product space. 2

Exercise 31 Show that the function

〈x,y〉 := (x1, x2)

(
2 1

1 2

)(
y1

y2

)
,
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where x = (x1, x2)
T , y = (y1, y2)

T , defines an inner product for the real linear space R2.

Notation: To ease notation, we will from now on write ‘+’ for the vector addition ‘⊕’, and

we will write ‘·’, or even omit the ‘·’, for the scalar multiplication ‘⊙’. It should be kept in

mind that these operations need not be addition and scalar multiplication in the sense usually

implied by the symbols ‘+’ and ‘·’. Likewise if we write ‘x− y’ we mean ‘x⊕ ((−1) ⊙ y)’.

Let X be an inner product space with inner product 〈·, ·〉. Then the space X has a natural

norm which is induced by the inner product:

‖x‖ :=
√
〈x, x〉, x ∈ X. (3.1.15)

One can check easily that this norm obeys all the properties of Definition 2.1 of a norm.

However, to prove that (3.1.15) obeys the triangle inequality we need the so-called Cauchy-

Schwarz inequality.

Lemma 3.5 (Cauchy-Schwarz inequality)

Let X be a (real or complex) inner product space with the inner product 〈·, ·〉 : X ×X → K,

and let ‖·‖ : X → R be defined by ‖x‖ :=
√

〈x, x〉. Then the Cauchy-Schwarz inequality

holds

|〈x, y〉| ≤ ‖x‖ ‖y‖ for all x, y ∈ X. (3.1.16)

Equality holds in (3.1.16) if and only if x and y are linearly dependent.

Proof of Lemma 3.5: First let us discuss the case that x and y are linearly dependent. Then

there exists a number α ∈ K such that x = α y or y = α x. Without restriction of generality

we may assume that x = α y, then

|〈x, y〉| = |〈α y, y〉| = |α〈y, y〉| = |α| ‖y‖2 =
√
αα 〈y, y〉 ‖y‖ =

√
〈α y, α y〉 ‖y‖ = ‖x‖ ‖y‖.

Hence equality clearly holds for linearly dependent x and y.

If x = O or y = O, then x and y are linearly independent; so this case is already covered, and

we may from now on assume that x 6= O and y 6= O.

If we have that 〈x, y〉 = 0, then inequality is clearly true as ‖x‖ ≥ 0 and ‖y‖ ≥ 0, and hence

〈x, y〉 = 0 ≤ ‖x‖ ‖y‖.

Now assume that 〈x, y〉 6= 0 and that x and y are linearly independent. Let α be a any complex

number. Then α x + y 6= 0 since x and y are linearly independent. From the non-degeneracy

of the inner product (3.1.4)

0 < ‖αx+ y‖2 = 〈αx+ y, α x+ y〉 = |α|2 ‖x‖2 +
(
α 〈x, y〉 + α 〈y, x〉

)
+ ‖y‖2. (3.1.17)

Notice that the expression in the brackets equals 2ℜ(α 〈x, y〉). Now we choose

α = t |〈x, y〉|
(
〈x, y〉

)−1
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with an arbitrary real number t. Then |α| = |t|, and (3.1.17) implies

0 < t2 ‖x‖2 + 2 t |〈x, y〉|+ ‖y‖2,

which is a quadratic function in t. The quadratic function of a real variable can be positive

only if its discriminant is negative. Hence

4 |〈x, y〉|2 − 4 ‖x‖2 ‖y‖2 < 0 ⇔ |〈x, y〉|2 < ‖x‖2 ‖y‖2,

and taking the square-root give the desired inequality. 2

The triangle inequality for the norm (3.1.15) follows from the Cauchy-Schwarz inequality,

using the properties of the inner product: for all x, y ∈ X we have

‖x+ y‖2 = 〈x+ y, x+ y〉
= ‖x‖2 + ‖y‖2 + 〈x, y〉 + 〈y, x〉
= ‖x‖2 + ‖y‖2 + 〈x, y〉 + 〈x, y〉
= ‖x‖2 + ‖y‖2 + 2ℜ〈x, y〉
≤ ‖x‖2 + ‖y‖2 + 2|ℜ〈x, y〉|
≤ ‖x‖2 + ‖y‖2 + 2|〈x, y〉|
≤ ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

= (‖x‖ + ‖y‖)2,

where we have used the Cauchy-Schwarz inequality in the second last step.

Lemma 3.6 (inner product space is a normed linear space)

Let X be an inner product space with the inner product 〈·, ·〉. Then X is a normed linear

space with the induced norm ‖x‖ :=
√
〈x, x〉.

The proof is left as an exercise.

Exercise 32 Let X be a real inner product space with inner product 〈·, ·〉 : X×X → R. Verify

that ‖x‖ :=
√
〈x, x〉 defines a norm for X, thus making (X, ‖ · ‖) a real normed linear space.

Definition 3.7 (Hilbert space)

An inner product space (or pre-Hilbert space) X with inner product 〈·, ·〉 is called a Hilbert

space if X with the norm ‖x‖ :=
√
〈x, x〉 is a Banach space, that is, if X with ‖x‖ :=√

〈x, x〉 is a complete normed linear space. (Notation: Usually we use the letter H to

denote a Hilbert space.)

Example 3.8 (Hilbert spaces Rd and Cd)

Both Rd and Cd with the inner product defined by (3.1.14) and (3.1.7), respectively, are Hilbert
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spaces. The induced norm is the the usual Euclidean norm

‖x‖ =

(
d∑

k=1

|xk|2
)1/2

for x,y ∈ Rd and x,y ∈ Cd, respectively. 2

In fact, we have the more general situation that any finite dimensional inner product space is

a Hilbert space.

Lemma 3.9 (finite dimensional inner product space is Hilbert space)

Any finite dimensional inner product space is a Hilbert space.

Exercise 33 Give the proof of Lemma 3.9.

The next lemma shows that the inner product is continuous.

Lemma 3.10 (inner product is continuous)

Let X be an inner product space with the inner product 〈·, ·〉 : X × X → K and with the

induced norm ‖x‖ :=
√
〈x, x〉. Let (xn)n∈N and (yn)n∈N be two convergent sequences in X

with limits x and y, respectively, that is, lim
n→∞

‖xn − x‖ = 0 and lim
n→∞

‖yn − y‖ = 0. Then

lim
n→∞

〈xn, yn〉 = 〈x, y〉. (3.1.18)

We note that in (3.1.18) the sequence (〈xn, yn〉)n∈N is just a sequence in K (that is, in C or R).

Proof of Lemma 3.10: By (3.1.12) and (3.1.13)

〈xn, yn〉 − 〈x, y〉 = 〈xn, yn〉 − 〈x, yn〉 + 〈x, yn〉 − 〈x, y〉
= 〈xn − x, yn〉 + 〈x, yn − y〉. (3.1.19)

The second term tends to zero due to the Cauchy-Schwarz inequality:

|〈x, yn − y〉| ≤ ‖x‖ ‖yn − y‖ → 0 as n→ ∞. (3.1.20)

To prove this for the first term, recall that the sequence (yn)n∈N is convergent and therefore

bounded by Lemma 2.43 from Chapter 2. Therefore there exists a constant C such that

‖yn‖ ≤ C for all n ∈ N. Thus, from the Cauchy-Schwarz inequality

|〈xn − x, yn〉| ≤ ‖xn − x‖ ‖yn‖ ≤ C ‖xn − x‖ → 0 as n→ ∞. (3.1.21)

The required result follows now from (3.1.19), (3.1.20), and (3.1.21). Indeed

∣∣〈xn, yn〉− 〈x, y〉
∣∣ ≤

∣∣〈xn −x, yn〉
∣∣+
∣∣〈x, yn − y〉

∣∣ ≤ C ‖xn −x‖+ ‖x‖ ‖yn − y‖ for all n ∈ N,

and thus limn→∞ |〈xn, yn〉 − 〈x, y〉| = 0. 2
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By direct calculation one checks the following two useful identities.

Lemma 3.11 (parallelogram identity and polarisation identity)

Let X be an inner product space with the inner product 〈·, ·〉. For the norm ‖x‖ :=
√

〈x, x〉
induced by an inner product the following equalities hold:

(i) Parallelogram equality:

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
for all x, y ∈ X. (3.1.22)

(ii) Polarisation identity: If X is a complex inner product space, then

4 〈x, y〉 = ‖x+y‖2−‖x−y‖2 + i
(
‖x+ i y‖2−‖x− i y‖2

)
for all x, y ∈ X. (3.1.23)

Exercise 34 Prove the parallelogram identity (3.1.22).

Exercise 35 Prove the polarisation identity (3.1.23).

The inner product allows us to introduce the important concept of orthogonality.

Definition 3.12 (orthogonal vectors; vector orthogonal to a subset)

Let X be an inner product space with the inner product 〈·, ·〉.
(i) Two elements x, y ∈ X \{O} are orthogonal if 〈x, y〉 = 0. If 〈x, y〉 = 0, we also write

x ⊥ y.

(ii) Let M ⊂ X be a (finite or infinite) subset of X. We say that the vectors in M are

orthogonal if any two different x, y ∈ M are orthogonal to each other. Then we also

call M an orthogonal set.

(iii) A vector x ∈ X is said to be orthogonal to a subset M ⊂ X if x is orthogonal to

every y ∈M , that is, 〈x, y〉 = 0 for all y ∈M .

Notice that two orthogonal non-zero vectors are linearly independent! In fact, if M ⊂ X is a

set of orthogonal vectors then the vectors in M are linearly independent. We will prove this

later.

Notice also that for two orthogonal vectors x and y we have the Pythagoras theorem:

‖x‖2 + ‖y‖2 = ‖x+ y‖2. (3.1.24)

Exercise 36 Prove Pythagoras theorem for an arbitrary inner product space X with inner

product 〈·, ·〉 and the corresponding induced norm ‖x‖ =
√

〈x, x〉.

Example 3.13 (orthogonal vectors in R3)

The Euclidean inner product of R3 is defined as

〈x,y〉2 :=
3∑

k=1

xk yk = x1 y1 + x2 y2 + x3 y3.
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Here any two vectors are orthogonal (in the sense of Definition 3.12) if and only if they are

perpendicular in the usual geometric sense. For example, the vectors (1, 2, 1)T and (−1, 1,−1)T

are orthogonal. 2

Example 3.14 (orthogonal vectors in R2)

The Euclidean inner product for R2 is given by 〈x,y〉2 = x1 y1 +x2 y2, where x = (x1, x2)
T and

y = (y1, y2)
T . Any non-zero vector orthogonal to a given non-zero vector x = (x1, x2)

T is of

the form y = α (−x2, x1), where α ∈ R \ {0}. 2

Now we will discuss some more complicated examples of inner products and Hilbert spaces.

Example 3.15 (Hilbert space ℓ2(N))

We have established in Chapter 2 that the sequence space ℓ2(N) with the norm

‖x‖2 =

(∑

k∈N

|xk|2
)1/2

, x = (xk)k∈N, (3.1.25)

is a Banach space. Now we define an inner product for this space by

〈x, y〉2 =
∑

k∈N

xk yk. (3.1.26)

Due to the Cauchy-Schwarz inequality in Lemma 3.5 (or Hölder’s inequality in Lemma 2.14

with p = q = 2), this product is finite (and hence well defined); indeed, for x, y ∈ ℓ2(N), we

have ‖x‖2 <∞ and ‖y‖2 <∞ and thus

|〈x, y〉2| ≤ ‖x‖2 ‖y‖2 <∞.

The inner product (3.1.26) induces the norm (3.1.25), and hence ℓ2(N) with the inner product

(3.1.26) is an inner product space. As ℓ2(N) is complete with respect to the norm (3.1.25), we

know that ℓ2(N) is a Hilbert space.

The following two elements are, for example, mutually orthogonal in ℓ2:

x = (1, 0, 0, . . .) and y = (0, y2, y3, . . .),

indeed 〈x, y〉2 = 1 · 0 + 0 · y2 + 0 · y3 + . . . = 0. 2

Exercise 37 Verify that (3.1.26) defines an inner product for ℓ2(N).

We summarise this as a corollary.

Corollary 3.16 (ℓ2(N) is a Hilbert space)

The linear space ℓ2(N) with the inner product

〈x, y〉2 :=
∑

k∈N

xk yk, x = (xk)k∈N, y = (yk)k∈N ∈ ℓ2(N), (3.1.27)

is a Hilbert space. The inner product (3.1.27) induces the 2-norm ‖ · ‖2 for ℓ2(N), defined

by (2.2.16) with p = 2.
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Example 3.17 (Hilbert space L2([a, b]))

On the space L2([a, b]) of square-integrable complex-valued functions (that is, all those mea-

surable functions f on [a, b] for which ‖f‖L2([a,b]) = (
∫ b

a
|f(x)|2 dx)1/2 <∞) we define the inner

product

〈f, g〉L2([a,b]) :=

∫ b

a

f(x) g(x) dx. (3.1.28)

As in the previous example, the Cauchy-Schwarz inequality shows that this number is finite if

f, g ∈ L2([a, b]). Furthermore, the inner product (3.1.28) induces the L2([a, b]) norm

‖f‖L2([a,b]) =

(∫ b

a

|f(x)|2 dx

)1/2

that was introduced in Definition 2.9. As we learnt that L2([a, b]) with respect to this norm is

complete, we know that L2([a, b]) with the inner product (3.1.28) is a Hilbert space.

An example of orthogonal functions in L2([a, b]) are f(x) ≡ 1 and any function g with the mean

value zero (that is,
∫ b

a
g(x) dx = 0). Indeed

〈f, g〉L2([a,b]) =

∫ b

a

f(x) g(x) dx =

∫ b

a

g(x) dx =

∫ b

a

g(x) dx = 0.

For example, if a = −π, b = π, then g(x) = sin x is orthogonal to f(x) ≡ 1. 2

Corollary 3.18 (L2([a, b]) and L2(R) are Hilbert spaces)

(i) The space L2([a, b]) with the inner product

〈f, g〉L2([a,b]) :=

∫ b

a

f(x) g(x) dx

is a Hilbert space. This inner product induces the norm ‖ · ‖L2([a,b]), defined by (2.2.20)

with p = 2.

(ii) The space L2(R) with the inner product

〈f, g〉L2(R) :=

∫

R

f(x) g(x) dx

is a Hilbert space. This inner product induces the norm ‖ · ‖L2(R), defined by (2.2.21)

with p = 2.

The function spaces L2([a, b]) and L2(R) will play an important role in this course. Therefore

we discuss some more examples of (sets of) orthogonal functions in L2([a, b]) for specific choices

of [a, b].

Example 3.19 (complex trigonometric polynomials)

The 2π-periodic complex trigonometric functions

ek(x) = αk e
ikx, k ∈ Z, (3.1.29)
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with normalisation factors αk ∈ C, are in the space L2([−π, π]). Indeed,

‖ek‖L2([−π,π]) =

(∫ π

−π

|ek(x)|2 dx

)1/2

=

(
|αk|2

∫ π

−π

|eikx|2 dx

)1/2

= |αk|
(∫ π

−π

1 dx

)1/2

= |αk|
√

2π.

One easily checks that these functions are mutually orthogonal:

∫ π

−π

ek(x) em(x) dx = αk αm

∫ π

−π

ei(k−m)x dx =

{
2π |αk|2 if k = m,
[
αk αm (i(k −m))−1 ei(k−m)x

]π
−π

= 0 if k 6= m,

where we have used that e−inπ = einπ for all n ∈ N, due to the 2π-periodicity of e−inx, n ∈ Z.

The functions ek, k ∈ Z, and any linear combinations of these are called complex trigono-

metric polynomials. We will say that ek and e−k are the complex trigonometric basis

polynomials of degree k, and we will refer to the set {ek : k ∈ Z} as the (set of) com-

plex trigonometric basis polynomials. The set span {ek : k = −n, . . . , n} is the space of

complex trigonometric polynomials of degree ≤ n. 2

You may have encountered 2π-periodic (real) trigonometric basis polynomials in previous

courses as the set of functions 1, cosx, sin x, cos(2x), sin(2x), . . . , cos(kx), sin(kx), . . . . These

are of course related to the functions eikx via Euler’s formula

eikx = cos(kx) + i sin(kx) and e−ikx = cos(kx) − i sin(kx),

from which we see that

cos(kx) =
1

2

(
eikx + e−ikx

)
and sin(kx) =

1

2i

(
eikx − e−ikx

)
.

As we consider complex-valued functions in this course, it is convenient for us to use the complex

trigonometric basis functions rather then then real trigonometric basis functions.

Example 3.20 (characteristic functions)

Denote by χI the characteristic function of the interval I, that is

χI(x) :=

{
1 if x ∈ I,
0 if x /∈ I.

Let I,J ⊂ R be two bounded intervals such that I ∩ J = ∅. Then the functions χI and χJ

are orthogonal with respect to the inner product

〈f, g〉L2(R) =

∫

R

f(x) g(x) dx.

This is clear since χI(x)χJ (x) = 0 for all x ∈ R. – In particular, if Ik = [k, k + 1), then the

functions χIk
and χIm

are orthogonal for distinct k,m ∈ Z. In fact, this statement is still true

if we choose Ik = [k, k + 1], so that distinct intervals may have a common boundary point. 2

The next example will be very important later-on and will in fact furnish our standard example

of a wavelet.
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Example 3.21 (Haar scaling function and Haar wavelet)

Let φ(x) := χ[0,1)(x) be the characteristic function of the half-open unit interval [0, 1). This

function is in the context of wavelets often referred to as the Haar scaling function. Define

ψ(x) := φ(2x) − φ(2x− 1).

This function is called the Haar wavelet. From its definition, we see that

ψ(x) =





1 if x ∈ [0, 1/2),

−1 if x ∈ [1/2, 1),

0 if x ∈ (−∞, 0) ∪ [1,∞).

It is easy to verify that the Haar scaling function and the Haar wavelet are orthogonal in L2(R),

that is,

〈φ, ψ〉L2(R) =

∫

R

φ(x)ψ(x) dx = 0. (3.1.30)

The proof of the orthogonality (3.1.30) is left as an exercise. 2

Exercise 38 Verify the orthogonality (3.1.30) of the Haar scaling function and the Haar

wavelet.

Remark 3.22 It is not possible to define an inner product for the spaces ℓp(N) or Lp([a, b]) or

Lp(R) with p 6= 2.

Similarly to the case of normed linear spaces, we introduce subspaces of an inner product space.

Definition 3.23 (subspace of an inner product space)

Let X be an inner product space with the inner product 〈·, ·〉. A subspace Y of X is a

subspace of the linear space X endowed with the inner product 〈·, ·〉 restricted to Y .

The previous definition makes it clear that a subspace Y of a Hilbert space H is an inner

product space. The fact that a Hilbert space is a complete inner product space does in general

not imply that a subspace is also complete! Instead we the following statement.

Lemma 3.24 (closed subspaces of a Hilbert space are complete)

Let H be a Hilbert space. A subspace Y of H is complete (and hence a Hilbert space) if Y

is a closed subspace of H.

Since a Hilbert space H is a linear space with additional properties, it has a dimension, defined

as the dimension of the linear space H . From Lemma 3.24 we draw the following conclusion.

Lemma 3.25 (finite dimensional subspaces of a Hilbert space are complete)

Let H be a Hilbert space and let Y be a finite dimensional subspace of H. Then Y is closed

and complete and hence also a Hilbert space.

The proofs of Lemma 3.24 and Lemma 3.25 are left as exercises.
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Exercise 39 Prove Lemma 3.24.

Exercise 40 Prove Lemma 3.25.

3.2 Best Approximation in Hilbert Spaces

In this section, we discuss the concept of distance and best approximation in a subset.

For a closed subspace Y of a Hilbert space H , the concept of best approximation in Y will lead

us to the notion of an orthogonal projection onto Y .

Definition 3.26 (distance in a Hilbert space)

Let X be an inner product space with an inner product 〈·, ·〉 and the induced norm ‖x‖ :=√
〈x, x〉. The distance dist(x, y) of x and y in X is measured with the norm via

dist(x, y) := ‖x− y‖.

Definition 3.27 (distance from a subset and best approximation in a subset)

Let X be an inner product space with an inner product 〈·, ·〉 and induced norm ‖x‖ :=√
〈x, x〉, and let M ⊂ X be a subset of X. For any (fixed) x ∈ X, the distance from x

to M is defined as

dist(x,M) := inf
y∈M

‖x− y‖. (3.2.1)

An element x∗ ∈M , where the infimum in (3.2.1) is attained, that is, which satisfies

‖x− x∗‖ = dist(x,M),

is called a best approximation of x in M .

We will now address the questions, whether a best approximation exists and, if it exists, whether

it is uniquely determined.

Definition 3.28 (convex subset)

Let X be a linear space, and let M ⊂ X. The subset M is called convex, if for every

x, y ∈M the vectors

z = y + α (x− y) = αx+ (1 − α) y, α ∈ (0, 1), (3.2.2)

also belong to M . (Note that the set (3.2.2) is just the ‘straight line’ connecting x and y,

excluding the end points.)

We note that for sets in R2 and R3 this definition describes just convexity in the usual geometric

sense.

Example 3.29 (convex sets)
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(a) The closed unit ball B̃(0; 1) in R3 is convex.

(b) The unit sphere S(0; 1) in R3 is not convex.

(c) The set of constant functions in C(R) is convex. 2

Lemma 3.30 (subspaces are convex)

Any subspace Y of a linear space X is convex.

Proof of Lemma 3.30: Let x, y ∈ Y be two arbitrary vectors. For any α ∈ (0, 1) the vector

z = y + α (x− y) = α x+ (1 − α) y

is a linear combination of x and y and lies also in the subspace Y . Hence Y is convex. 2

In a convex closed subset of a Hilbert space there exists a best approximation.

Theorem 3.31 (best approximation exists in closed convex subset)

Let H be a Hilbert space with inner product 〈·, ·〉 and induced norm ‖x‖ :=
√

〈x, x〉. Let

M ⊂ H be a closed convex subset of H. Then, for every x ∈ H there exists a unique

x∗ ∈M such that

dist(x,M) = ‖x− x∗‖,
that is, there exists a unique best approximation of x in M .

Proof of Theorem 3.31: We first show the existence of a best approximation. Then we show

that it is unique.

Existence: By definition of an infimum, there exists a sequence (yn)n∈N in M such that

dn := ‖x− yn‖ → dist(x,M) =: d, as n→ ∞. (3.2.3)

We now show that this sequence is a Cauchy sequence: Due to the convexity of M , for any

m,n ∈ N the element (yn + ym)/2 is also in M . Thus

‖(yn + ym)/2 − x‖ ≥ dist(x,M) = d. (3.2.4)

Thus by the parallelogram equality (3.1.22), we have

‖yn + ym − 2 x‖2 + ‖yn − ym‖2 = ‖(yn − x) + (ym − x)‖2 + ‖(yn − x) − (ym − x)‖2

= 2
(
‖yn − x‖2 + ‖ym − x‖2

)
,

which can be rearranged to yield

‖yn − ym‖2 = −‖yn + ym − 2 x‖2 + 2
(
‖yn − x‖2 + ‖ym − x‖2

)

= − 4 ‖(yn + ym)/2 − x‖2 + 2
(
‖yn − x‖2 + ‖ym − x‖2

)

≤ − 4 d2 + 2 (d2
n + d2

m), (3.2.5)



46 3.2. Best Approximation in Hilbert Spaces

where we have used (3.2.4) in the last step. The right-hand side tends to zero as m and n tend

to infinity, due to (3.2.3). Thus for any ǫ > 0, there exists an N = N(ǫ) ∈ N such that

‖yn − ym‖ ≤
√

2 (d2
n + d2

m) − 4 d2 < ǫ for all n,m ≥ N,

and we see (yn)n∈N is indeed a Cauchy sequence in H .

Since the Hilbert space H is complete, we know that this Cauchy sequence (yn)n∈N converges

to a limit x∗ ∈ H , that is, x∗ := limn→∞ yn and x∗ ∈ H . Since yn ∈ M for all n ∈ N, the limit

x∗ is an accumulation point of M . Since M is closed the accumulation point x∗ lies also in M .

Thus we see that (yn)n∈N converges to a limit x∗ ∈M .

Moreover, ‖x∗ − x‖ ≥ d as x∗ lies in M , and also from the triangle inequality

d ≤ ‖x− x∗‖ ≤ ‖x− yn‖ + ‖yn − x∗‖ → d as n→ ∞.

From the sandwich theorem, this implies that ‖x−x∗‖ = d, and hence x∗ is a best approximation

of x.

Uniqueness: Suppose that there are two distinct vectors x∗ ∈ M and z ∈ M that are best

approximations, that is

‖x− x∗‖ = ‖x− z‖ = dist(x,M) = d.

Then all vectors of the form αx∗ + (1 − α) z, where α ∈ (0, 1), lie in M , as M is convex. Also

all such vectors satisfy (using the triangle inequality)

d ≤ ‖αx∗ + (1 − α) z − x‖
= ‖α (x∗ − x) + (1 − α) (z − x)‖
≤ α ‖x∗ − x‖ + (1 − α) ‖z − x‖
= α d+ (1 − α) d = d,

which verifies that

‖αx∗ + (1 − α) z − x‖ = d for all α ∈ [0, 1]. (3.2.6)

Now using the parallelogram equality (3.1.22) again (replace in the first line of (3.2.5) yn and

ym by x∗ and z, respectively), we see that

‖x∗ − z‖2 = −‖x∗ + z − 2x‖2 + 2
(
‖x∗ − x‖2 + ‖z − x‖2

)

= −4 ‖(x∗ + z)/2 − x‖2 + 2
(
‖x∗ − x‖2 + ‖z − x‖2

)

= −4 δ2 + 2 (δ2 + δ2) = 0,

where we have used (3.2.6) with α = 1/2 in the second-last step. Therefore x∗ = z, and we

have verified that the best approximation is unique. 2

We come now to the main characterisation of the best approximation in the case of a subspace.
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Theorem 3.32 (best approx. x∗ ∈ Y of x satisfies (x− x∗) ⊥ Y if Y closed subspace)

Let H be a Hilbert space with inner product 〈·, ·〉 and induced norm ‖x‖ :=
√

〈x, x〉. Suppose

Y is a closed subspace of H. Then x∗ ∈ Y is the unique best approximation of x ∈ H in

Y , if and only if x− x∗ is orthogonal to Y .

Before we prove the theorem, we remark that, from Theorem 3.31, it is clear that the best

approximation exists and is unique, since the closed subspace is both closed and convex.

Proof of Theorem 3.32: ⇒: Let x∗ be the unique best approximation of x ∈ H , and consider

an arbitrary vector y ∈ Y and let α := 〈x − x∗, y〉. Without restriction, we may assume that

‖y‖ = 1. As y and x∗ are in Y and as Y is subspace, the vector x∗ + α y is also in Y . Then

‖x− (x∗ + α y)‖2 =
〈
(x− x∗) − α y, (x− x∗) − α y

〉

= ‖x− x∗‖2 − α 〈x− x∗, y〉 − α 〈y, x− x∗〉 + |α|2 ‖y‖2

= ‖x− x∗‖2 − αα− αα + |α|2 < 0

= ‖x− x∗‖2 − |α|2,

where we have used the definition of α and ‖y‖ = 1. As x∗ is the unique best approximation

of x in Y and as x∗ + α y ∈ Y , we also know from the previous estimate that

‖x− x∗‖2 ≤ ‖x− (x∗ + α y)‖2 = ‖x− x∗‖2 − |α|2

This can only hold true if α = 0, yielding from the definition of α that 〈x − x∗, y〉 = 0. As

y ∈ Y was arbitrary, we have shown that x− x∗ is indeed orthogonal to Y .

⇐: Let x∗ ∈ Y and (x−x∗) ⊥ Y , that is 〈x−x∗, y〉 = 0 for all y ∈ Y . This particularly means

that for any y ∈ Y also 〈x− x∗, x∗ − y〉 = 0 (since x∗ − y ∈ Y as x∗, y ∈ Y and as Y is a linear

space). Hence, by Pythagoras theorem (3.1.24), we have (using 〈x− x∗, x∗ − y〉 = 0)

‖x−y‖2 = ‖(x−x∗)+(x∗−y)‖2 =
〈
(x−x∗)+(x∗−y), (x−x∗)+(x∗−y)

〉
= ‖x−x∗‖2+‖x∗−y‖2

for all y ∈ Y . As ‖x∗ − y‖2 ≥ 0, this implies

‖x− y‖ ≥ ‖x− x∗‖ for all y ∈ Y,

with equality only if y = x∗. Thus x∗ is indeed the unique best approximation of x in Y . 2

Let us have a look at the special situation of a finite dimensional subspace Y . Since a

finite dimensional subspace of a Hilbert space is always convex and closed, any x ∈ H has a

unique best approximation in x∗ ∈ Y (due Theorem 3.31). Assume that Y is an n-dimensional

subspace and that {ψ1, ψ2, . . . , ψn} is a basis for Y . Then, given x ∈ H , we can write its best

approximation x∗ in Y as

x∗ =

n∑

j=1

αj ψj (3.2.7)

with coefficients α1, α2, . . . , αn ∈ K, which we have to determine. From Theorem 3.32,

〈x− x∗, y〉 = 0 for all y ∈ Y.
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Since {ψ1, ψ2, . . . , ψn} is a basis of Y , this is equivalent to

〈x− x∗, ψk〉 = 0 for all k = 1, 2, . . . , n ⇔ 〈x, ψk〉 = 〈x∗, ψk〉 for all k = 1, 2, . . . , n.

Hence, inserting the representation (3.2.7) of x∗, we have

〈x, ψk〉 = 〈x∗, ψk〉 =

〈
n∑

j=1

αj ψj , ψk

〉
=

n∑

j=1

αj 〈ψj , ψk〉, k = 1, 2, . . . , n.

This defines a linear system for the coefficient vector α = (α1, α2, . . . , αn)T , namely

Aα = b,

with the Hermitian matrix A = [〈ψj , ψk〉]j,k=1,2,...,n, and the right-hand side b = (〈x, ψk〉)T
k=1,2,...,n.

This leads us to the following corollary.

Corollary 3.33 (form of best approximation in a finite dimensional subspace)

Let H be a Hilbert space with inner product 〈·, ·〉 and induced norm ‖x‖ :=
√

〈x, x〉, and

let Y be a finite dimensional subspace of H. Suppose {ψ1, ψ2, . . . , ψn} forms a basis for

the subspace Y . Then the best approximation x∗ ∈ Y of x ∈ H in Y has the unique

representation

x∗ =
n∑

j=1

αj ψj ,

where the coefficients α1, α2, . . . , αn ∈ K are the unique solution of the following linear

system:

〈x, ψk〉 =
n∑

j=1

αj 〈ψj, ψk〉, k = 1, 2, . . . , n. (3.2.8)

Proof of Corollary 3.33: From the considerations before the corollary it remains only to

show that the linear system (3.2.8) is uniquely solvable. We saw already that we can rewrite

(3.2.8) as Aα = (〈x, ψk〉)T
k=1,2,...,n with α = (α1, α2, . . . , αn)T and the unitary matrix A =

[〈ψj , ψk〉]j,k=1,2,...,n. From

α
T Aα =

n∑

j=1

n∑

k=1

αj αk 〈ψj , ψk〉 =

〈
n∑

j=1

αj ψj ,

n∑

k=1

αk ψk

〉
=

∥∥∥∥∥
n∑

j=1

αj ψj

∥∥∥∥∥ ≥ 0,

we see that the matrix A is positive semi-definite. Moreover, we have α
TAα = 0 if and only

if
∑n

j=1 αj ψj = 0 which implies α = (α1, α2, . . . , αn)
T = (0, 0, . . . , 0)T (as ψ1, ψ2, . . . , ψn are

linearly independent). Hence we see that α
TAα ≥ 0 with equality only if α = α = 0, showing

that A is positive definite and hence in particular invertible. (Indeed, if Aα = 0, then we have

α
TAα = 0, and we know that this is only true for α = 0. Thus Aα = 0 implies α = α = 0,

and hence A is invertible.) Thus the linear system (3.2.8) has indeed a unique solution. 2
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Definition 3.34 (Gram matrix/Gramian matrix)

Let H be a Hilbert space with inner product 〈·, ·〉, and let Y be an n-dimensional subspace

of Y . Let ψ1, ψ2, . . . , ψn be a basis of Y . The matrix A = [〈ψj, ψk〉]j,k=1,2,...,n is called the

Gram matrix (or Gramian Matrix) of the basis ψ1, ψ2, . . . , ψn.

From the definition of the Gram matrix A it is clear that A is Hermitian (that is, A
T

= A).

We saw in the proof of Corollary 3.33 that any Gram matrix is positive definite and invert-

ible. (A square matrix A ∈ Cn×n is called positive definite if A is Hermitian and if for all

α ∈ Cn we have α
TAα ≥ 0 with equality only if α = 0.)

Exercise 41 Let X be an inner product space with inner product 〈·, ·〉, and let Y ⊂ X be a

finite dimensional subspace. Show that the subspace Y is closed.

We want now to compute the best approximation in two examples:

Example 3.35 (best approximation in R3)

Consider R3 with the Euclidean inner product

〈x,y〉2 =

3∑

j=1

xj yj = x1 y1 + x2 y2 + x3 y3

and the induced Euclidean norm ‖x‖2 =
√∑3

j=1 |xj |2. Let Y be the linear subspace

Y = span








2

1

0


 ,




−1

1

0





 ,

and let x = (1, 0, 3)T . We want to find the best approximation x∗ of x in Y with the help of

Corollary 3.33.

Solution: First we use common sense to guess the answer: We observe that Y is just the

hyperplane z = 0 in R3. Hence we expect that the best approximation of x = (1, 0, 3)T in

Y is given by x∗ = (1, 0, 0)T and that dist(x, Y ) = 3. We will now verify this by a proper

computation.

Setting

x∗ = α1




2

1

0


+ α2




−1

1

0


 ,

the Gram matrix is given by

A =

( 〈
(2, 1, 0)T , (2, 1, 0)T

〉
2

〈
(−1, 1, 0)T , (2, 1, 0)T

〉
2〈

(2, 1, 0)T , (−1, 1, 0)T
〉
2

〈
(−1, 1, 0)T , (−1, 1, 0)T

〉
2

)
=

(
5 −1

−1 2

)

and 〈
(1, 0, 3)T , (2, 1, 0)T

〉
2

= 2 and
〈
(1, 0, 3)T , (−1, 1, 0)T

〉
2

= −1.
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Thus the linear system is (
5 −1

−1 2

)(
α1

α2

)
=

(
2

−1

)
.

Solving the linear system we find

(
α1

α2

)
=

1

9

(
2 1

1 5

)(
2

−1

)
=

1

9

(
3

−3

)
=

(
1/3

−1/3

)
,

and the best approximation x∗ is given by

x∗ =
1

3




2

1

0


− 1

3




−1

1

0


 =




1

0

0


 ,

as expected. Furthermore, dist(x, Y ) = ‖x − x∗‖2 = ‖(0, 0, 3)T‖2 = 3 as expected. 2

Example 3.36 (best approximation by polynomials in L2([0, 1]))

Let H = L2([0, 1]) be the space of real-valued square-integrable functions, endowed with the

inner product

〈f, g〉L2([0,1]) :=

∫ 1

0

f(t) g(t) dt

and the induced norm

‖f‖L2([0,1]) :=
√

〈f, f〉L2([0,1]) =

(∫ 1

0

|f(t)|2 dt

)1/2

.

Let Y = span {1, t, t2} = Π2([0, 1]) be the space of polynomials of degree ≤ 2 on [0, 1] with real

coefficients. We want to compute the best approximation of f(t) = et in Y with the help of

Corollary 3.33. First we compute the Gram matrix (where we write 〈·, ·〉 instead of 〈·, ·〉L2([0,1])

for brevity):

A =




〈1, 1〉 〈1, t〉 〈1, t2〉
〈t, 1〉 〈t, t〉 〈t, t2〉
〈t2, 1〉 〈t2, t〉 〈t2, t2〉


 =




∫ 1

0
1 dt

∫ 1

0
t dt

∫ 1

0
t2 dt

∫ 1

0
t dt

∫ 1

0
t2 dt

∫ 1

0
t3 dt

∫ 1

0
t2 dt

∫ 1

0
t3 dt

∫ 1

0
t4 dt


 =




1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5


 .

Next we compute the right-hand side

b =




〈et, 1〉
〈et, t〉
〈et, t2〉


 =




∫ 1

0
et dt

∫ 1

0
et t dt

∫ 1

0
et t2 dt


 =




e− 1

1

e− 2


 .

The coefficients α1, α2, α3 in best approximation f ∗(t) = α1 +α2 t+α2 t
2 are then the solutions

of the linear system Aα = b, given by



1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5







α1

α2

α3


 =




e− 1

1

e− 2


 .
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Thus we have, computing the inverse matrix A−1,

α = A−1b =




9 −36 30

−36 192 −180

30 −180 180







e− 1

1

e− 2


 =




−105 + 39 e

588 − 216 e

−570 + 210 e


 ≈




1.0130

0.8511

0.8392


 ,

and hence the best approximation of f(t) = et in Y is given by the polynomial

f ∗(t) = 1.0130 + 0.8511 t+ 0.8392 t2. 2

Exercise 42 Let R3 be the Euclidean space with the Euclidean inner product 〈x,y〉2 =
∑3

j=1 xj yj.

Using Corollary 3.33, compute the best approximation of the vector x = (1, 4, 2)T in the subspace

Y = span
{
(2, 0, 1)T , (1, 0,−1)T

}
.

Definition 3.37 (direct sum and orthogonal direct sum)

(i) A linear space X is said to be the direct sum of two subspaces Y and Z, written as

X = Y ⊕ Z,

if every x ∈ X has a unique representation

x = y + z with y ∈ Y and z ∈ Z.

The subspaces Y and Z are called a complementary pair of subspaces of X.

(ii) If X is an inner product space (with inner product 〈·, ·〉) and Y and Z are two subspaces

such that X = Y ⊕ Z and Y ⊥ Z (that is, 〈y, z〉 = 0 for any y ∈ Y and z ∈ Z), then

the direct sum X = Y ⊕ Z is called an orthogonal sum.

We will now prove that every Hilbert space can be represented as a direct sum of a closed

subspace and its orthogonal complement.

Definition 3.38 (orthogonal complement of a subset)

Let X be an inner product space with inner product 〈·, ·〉, and let M ⊂ X be a subset. Then,

the orthogonal complement of M (or the annihilator of M) is defined to be the set

M⊥ := {x ∈ X : x ⊥M} = {x ∈ X : 〈x, y〉 = 0 for all y ∈M} .

The orthogonal complement is always a closed subspace.

Lemma 3.39 (orthogonal complement in a Hilbert space is a closed subspace)

Let H be a Hilbert space with inner product 〈·, ·〉, and let M ⊂ H be a subset. The

orthogonal complement M⊥ of M is a closed subspace of H.
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Proof of Lemma 3.39: First of all, if x1, x2 ∈ M⊥ and α1, α2 ∈ K, then the linearity of the

inner product in the first argument yields

〈α1 x1 + α2 x2, y〉 = α1 〈x1, y〉 + α2 〈x2, y〉 = 0 for all y ∈M.

Hence M⊥ is closed under vector addition and scalar multiplication and is hence a subspace.

Next, take a Cauchy sequence (xn)n∈N ⊂M⊥. Since H is a Hilbert space, the Cauchy sequence

(xn)n∈N converges in H to a unique limit x ∈ H . Then, the continuity of the inner product (see

Lemma 3.10) allows us to conclude that

〈x, y〉 = lim
n→∞

〈xn, y〉︸ ︷︷ ︸
= 0

= 0 for all y ∈M.

This means that the limit x is also in M⊥ and hence that M⊥ is closed. 2

Theorem 3.40 (Hilbert space as orthogonal sum of closed subspace Y and Y ⊥)

Let Y be a closed subspace of the Hilbert space H. Then H = Y ⊕ Y ⊥ and the direct sum is

an orthogonal sum.

Proof of Theorem 3.40: By Theorem 3.31 and Theorem 3.32 for any x ∈ H there exist a

unique best approximation x∗ ∈ Y such that dist(x, Y ) = ‖x− x∗‖ and (x − x∗) ⊥ Y . Hence,

if we define z := x− x∗ then we have obviously

x = x∗ + (x− x∗) = x∗ + z

and x∗ ∈ Y and z = x − x∗ ∈ Y ⊥. Hence any x ∈ H can be written as a sum of an element

in Y and an element in Y ⊥. By definition of the orthogonal complement Y ⊥ is orthogonal to

Y . It remains to show that this representation x = x∗ + z with the best approximation x∗ ∈ Y

and z = x− x∗ ∈ Y ⊥ is unique.

Suppose that we have two representations

x = x1 + z1 = x2 + z2

with x1, x2 ∈ Y and z1, z1 ∈ Y ⊥. Then,

x1 − x2 = z2 − z1

and taking the inner product with x1 − x2 leads to

‖x1 − x2‖2 = 〈x1 − x2, z2 − z1〉 = 0,

where we have used that x1 − x2 ∈ Y and z2 − z1 ∈ Y ⊥. Thus, we have x1 = x2 and then also

z1 = z2. 2

We compute the orthogonal complement for some examples.
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Example 3.41 (orthogonal complement in R3)

Let R3 be the usual Euclidean space with the Euclidean inner product 〈x,y〉 =
∑3

j=1 xj yj. Let

Y be the subspace

Y :=
{
t (1, 2, 3)T : t ∈ R

}
.

Find the orthogonal complement of Y .

Solution: Since dimY = 1 and dim R3 = 3, we know that Y ⊥ is a 2-dimensional subspace,

that is, a plain through the origin. This plane will be spanned by any two linearly independent

vectors that are orthogonal to (1, 2, 3)T . For example, we can choose (1, 1,−1)T and (−3, 0, 1)T .

Thus Y ⊥ is the linear space

Y ⊥ =
{
α (1, 1,−1)T + β (−3, 0, 1)T : α, β ∈ R

}
.

The Hilbert space R3 is the orthogonal sum R3 = Y ⊕ Y ⊥. 2

Example 3.42 (orthogonal complement in Π1([0, 1]))

Let Π1([0, 1]) = span {1, t} be the real linear space of polynomials of degree ≤ 1 on [0, 1] with

real coefficients, with the inner product

〈f, g〉L2([0,1]) :=

∫ 1

0

f(t) g(t) dt,

and let Y := Π0([0, 1]) = span {1} be the subspace of constant polynomials. Find Y ⊥.

Solution: Since dimP1([0, 1]) = 2 and dimY = 1, we know that dimY ⊥ = 1. We find a

linear polynomial that is orthogonal to the constant polynomial 1 (and hence to all constant

polynomials).

〈a+ b t, 1〉L2([0,1]) =

∫ 1

0

(
a + b t

)
1 dt =

[
a t+

b

2
t2
]1

0

= a +
b

2
= 0.

Thus we may choose a = 1 and b = −2. Then p(t) := 1 − 2 t is orthogonal to Y and

Y ⊥ = span {p(t) = 1 − 2 t} = {α p(t) = α− 2α t : α ∈ R} .

The inner product space Π1([0, 1]) is the orthogonal sum Π1([0, 1]) = Y ⊕ Y ⊥. 2

Exercise 43 Consider R3 with the Euclidean inner product 〈x,y〉2 =
∑3

j=1 xj yj. Let

Y := span
{
(2, 0, 1)T , (1, 1,−2)T

}
.

Determine the orthogonal complement Y ⊥.

Exercise 44 Let H = Π3([−1, 1]) = span {1, t, t2} be the real linear space of polynomials of

degree ≤ 2 on [−1, 1] with real coefficients, endowed with the inner product

〈f, g〉L2([−1,1]) =

∫ 1

−1

f(t) g(t) dt.

Let Y = span {1, t2}. Find Y ⊥. Show your work.
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Definition 3.43 (projection and orthogonal projection operator)

(i) Let X be a linear space, and let P : X → X be a linear function such that

P 2 = P ◦P = P . Then P is called a projection (operator) from X onto range(P ).

(ii) Let X be an inner product space with inner product 〈·, ·〉, and let P be a projection

from X onto range(P ). Then P is the orthogonal projection (operator) onto

range(P ) if

〈Px, y〉 = 〈x, Py〉 for all x, y ∈ X.

Example 3.44 (projections for R2)

Let R2 be endowed with the usual Euclidean inner product 〈x,y〉2 := x1 y1 + x2 y2.

(a) The function P : R2 → R2,

Px := Ax =

(
0 0

2 1

)(
x1

x2

)
=

(
0

2 x1 + x2

)
, (3.2.9)

is a projection but not an orthogonal projection. Indeed P 2x = AAx and

AA =

(
0 0

2 1

)(
0 0

2 1

)
=

(
0 0

2 1

)
= A.

Hence P 2x = AAx = Ax = Px, and P is clearly a projection. However, from (3.2.9)

〈Px,y〉2 = 0 + (2 x1 + x2) y2 6= 0 + x2 (2 y1 + y2) = 〈x, Py〉2,

which shows that P is not an orthogonal projection.

(b) The function P : R2 → R2,

Px := Ax =

(
0 0

0 1

)(
x1

x2

)
=

(
0

x2

)
, (3.2.10)

is an orthogonal projection. Indeed P 2x = AAx and

AA =

(
0 0

0 1

)(
0 0

0 1

)
=

(
0 0

0 1

)
= A.

Hence P 2x = AAx = Ax = Px, and P is clearly a projection. Moreover, from (3.2.10)

〈Px,y〉2 = 0 + x2 y2 = 〈x, Py〉2 for all x,y ∈ R2,

which shows that P is an orthogonal projection. 2

Lemma 3.45 (elementary properties of projection operators)

(i) Let X be a linear space, and let P : X → X be a projection operator. Restricted to the

linear space range(P ), the projection P is the identity operator, that is, Px = x for all

x ∈ range(P ).

(ii) Let H be an inner product space, and let P : H → Y be an orthogonal projection onto

a subspace Y . Then Px = O for any x that is orthogonal to the subspace Y .
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Exercise 45 Give the proof of Lemma 3.45.

Lemma 3.46 (best approx. in closed subspace Y is orthogonal proj. onto Y )

Suppose H is a Hilbert space and Y ⊂ H a closed subspace. The function P : H → Y

that assigns to every x ∈ H its best approximation x∗ in Y , that is Px := x∗, is the

orthogonal projection onto Y .

In the next section we will learn more theory that allows us to compute the orthogonal projection

onto a given closed subspace in a convenient way.

Proof of Lemma 3.46: Let x ∈ H be an arbitrary element and let Px := x∗ be its best

approximation in Y .

The best approximation of x in Y is the unique element x∗ in Y such that dist(x, Y ) = ‖x−x∗‖.
Thus P (x∗) = P (P (x)) is the unique element in Y such that dist(x∗, Y ) = ‖P (x∗) − x∗‖. But

since x∗ ∈ Y , we have dist(x∗, Y ) = 0, and hence P (x∗) = x∗. Thus, from as x∗ = Px, we find

P 2x = Px, and as x ∈ H was arbitrary we have P 2 = P . Therefore we know that the function

P is a projection, and we also know that range(P ) = Y . It remains to show that the projection

is an orthogonal projection.

From Theorem 3.32 we know that x− x∗ = x− Px is orthogonal to Y . Hence for all x, z ∈ H

〈Px, z〉 =
〈
Px, Pz + (z − Pz)

〉

=
〈
Px, Pz

〉
+
〈
Px, (z − Pz)

〉
︸ ︷︷ ︸

= 0

=
〈
x− (x− Px), P z

〉

=
〈
x, Pz

〉
−
〈
x− Px, Pz

〉
︸ ︷︷ ︸

= 0

= 〈x, Pz〉,
where we have used that Px ⊥ (z − Pz) and (x − Px) ⊥ Pz. Hence 〈Px, z〉 = 〈x, Pz〉 for all

x, z ∈ H , which verifies that the projection is an orthogonal projection. 2

Exercise 46 Let H be a Hilbert space and let P : H → Y be an orthogonal projection onto a

closed subspace Y ⊂ H. Show that the functions I − P : H → H (where I : H → H is the

identity map Ix = x), (I−P )(x) = x−Px, is also an orthogonal projection. What is the range

of I − P?

We end this section with a final look at the orthogonal complement of an arbitrary set M .

Lemma 3.47 Let H be a Hilbert space and let M1, M2, and M be subsets of H.

(i) If M1 ⊂M2 then M⊥
2 ⊂M⊥

1 ;

(ii) M⊥ = M
⊥
;

(iii) M⊥ = (spanM)⊥.
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We note that from (ii) and (iii) in Lemma 3.47, for any subset M in H

M⊥ = (spanM)⊥.

If the linear space spanM is finite dimensional, then spanM = spanM and taking the closure

of spanM gives now new elements. It is for the case of infinite dimensional spaces spanM

where taking the closure usually makes a huge difference and where spanM is usually a true

subset of spanM . If spanM is infinite dimensional then taking the closure spanM means that

we add all accumulation points, that is, we add all limits of sequences in spanM that converge

in H .

Proof of Lemma 3.47:

(i) As M⊥
2 = {x ∈ H : 〈x, y〉 = 0 for all y ∈ M2} and as M1 ⊂ M2, any element in x ∈ M⊥

2

also satisfies

〈x, y〉 = 0 for all y ∈ M1 ⊂M2.

Hence x is also in M⊥
1 which shows that M⊥

2 ⊂M⊥
1 .

(ii) As M ⊂ M , (i) implies that M
⊥ ⊂ M⊥. It remains to show that M⊥ ⊂ M

⊥
. Let

x0 ∈M⊥, that is, 〈x0, x〉 = 0 for all x ∈M . As the set M is the union of M with the set of all

accumulation points of M , it is enough to show that 〈x0, x〉 = 0 for any accumulation point x

of M . For any accumulation point x of M , we can find a sequence (xn)n∈N ⊂M that converges

to x, that is, limn→∞ ‖xn − x‖ = 0. Then 〈xn, x0〉 = 0 for all n ∈ N, and by the continuity of

the inner product (see Lemma 3.10)

0 = lim
n→∞

〈xn, x0〉︸ ︷︷ ︸
= 0

= 〈x, x0〉.

Thus x ⊥ x0 for any accumulation point x of M , and hence x0 ∈ M
⊥
. As x0 ∈ M⊥ was

arbitrary, this shows that M⊥ ⊂M
⊥
.

(iii) As M ⊂ span (M), we know from (i) that (spanM)⊥ ⊂M⊥. It remains to prove that also

M⊥ ⊂ (spanM)⊥. By definition, x ∈M⊥ if and only if

〈x, y〉 = 0, for all y ∈M.

By the linearity of the scalar product in each variable, x ∈M⊥ is also orthogonal to any linear

combination of vectors from M , that is, if y1, y2, . . . , yn ∈M , then also

〈
x,

n∑

j=1

αj yj

〉
=

n∑

j=1

αj 〈x, yj〉 = 0

for any choice of α1, α2, . . . , αn and any n ∈ N. Hence x ⊥ spanM , that is, x ∈ (spanM)⊥. As

x ∈M⊥ was arbitrary, we see that M⊥ ⊂ (spanM)⊥.

Thus we have proved properties (i) to (iii). 2
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Lemma 3.48 (characterisation of a dense spanM in a Hilbert space)

Let M be a subset of a Hilbert space H. Then spanM is dense in H (that is, spanM = H)

if and only if M⊥ = {O}.

Proof of Lemma 3.48: ⇒: Let Y = spanM be dense in H . Let x ∈ M⊥ be arbitrary.

Because spanM is dense in H , there exists a sequence (xn)n∈N in spanM such that xn → x

as n → ∞. On the other hand, from Lemma 3.47 (iii), we know M⊥ = (spanM)⊥ so that

x ⊥ span (M) and, in particular, 〈xn, x〉 = 0 for all n ∈ N. Thus from the continuity of the

inner product (see Lemma 3.10)

0 = lim
n→∞

〈xn, x〉 = 〈x, x〉 = ‖x‖2.

From ‖x‖ = 0 we know hat x = O, Hence M⊥ contains only the zero vector, that is, M⊥ = {O}.

⇐: Assume that M⊥ = {O}. Then, from Lemma 3.47 (iii), (spanM)⊥ = M⊥ = {O}.
Furthermore by Lemma 3.47 (ii) we find (spanM)⊥ = (spanM)⊥ = {O}. As spanM is a

closed linear subspace, by Theorem 3.40, we have the orthogonal sum

H = spanM ⊕ (spanM)⊥ = spanM ⊕ {O},

which implies spanM = H , that is, spanM is dense in H . 2

3.3 Orthonormal Sets and Orthogonal Projection

In this section we come back to the concept of orthogonality and discuss orthonormal (that

is, orthogonal and normalised) sets of vectors and the orthogonal projection onto a closed

subspace.

Definition 3.49 (orthogonal subset and orthonormal subset)

Let X be an inner product space with inner product 〈·, ·〉.
(i) A subset M ⊂ X is called orthogonal if all its elements are pairwise orthogonal.

(ii) A subset M ⊂ X is called orthonormal if it is orthogonal and all its elements have

norm 1, that is, for all x, y ∈ M we have

〈x, y〉 =

{
0 if x 6= y,

1 if x = y.

Example 3.50 (canonical basis in Cd)

Consider Cd with the Euclidean inner product 〈x,y〉2 =
∑d

k=1 xk yk. Then the canonical basis

e1 = (1, 0, 0, . . . , 0, 0)T , e2 = (0, 1, 0, . . . , 0, 0)T , . . . , ed = (0, 0, 0, . . . , 0, 1)T ,

is an orthonormal set in Cd. 2
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In the sequel, we will mainly be concerned with countable orthonormal sets.

Lemma 3.51 (members of an orthonormal set are linearly independent)

Let X be an inner product space. An orthonormal set M ⊂ X is linearly independent.

Proof: We have to show that any finite subset {e1, . . . , en} of the given orthonormal set M is

linearly independent. Consider the equation

n∑

k=1

αk ek = O.

Taking the inner product with eℓ, ℓ = 1, 2, . . . , n, shows
〈

n∑

k=1

αk ek, eℓ

〉
=

n∑

k=1

αk 〈ek, eℓ〉︸ ︷︷ ︸
= δk,ℓ

= αℓ = 〈O, eℓ〉 = 0 for all ℓ = 1, 2, . . . , n.

Thus we see that α1 = α2 = . . . = αn = 0, and we have verified that e1, e2, . . . , en are linearly

independent. 2

It is also important to know that any countable linearly independent set can be ‘converted’ into

an orthonormal set with the Gram-Schmidt orthonormalisation procedure.

Lemma 3.52 (Gram-Schmidt orthonormalisation)

Let X be an inner product space and let M be a subset M := {φ1, φ2, . . . , } of linearly

independent elements of X. Then there exists an orthonormal set M̃ = {ψ1, ψ2, . . . , } such

that spanM = span (M̃).

Proof: The proof is by inductive construction. First set ψ1 := φ1/‖φ1‖. Then, suppose

that n orthonormal vectors ψ1, ψ2, . . . , ψn spanning the same space as φ1, φ2, . . . , φn, that is,

span {ψ1, ψ2, . . . , ψn} = span {φ1, φ2, . . . , φn}, have been constructed. Then, we set

ψ̃n+1 = φn+1 −
n∑

k=1

〈φn+1, ψk〉ψk.

Taking the inner product with ψj for 1 ≤ j ≤ n shows orthogonality:

〈ψ̃n+1, ψj〉 =

〈
φn+1 −

n∑

k=1

〈φn+1, ψk〉ψk , ψj

〉

= 〈φn+1, ψj〉 −
n∑

k=1

〈φn+1, ψk〉 〈ψk, ψj〉︸ ︷︷ ︸
= δj,k

= 〈φn+1, ψj〉 − 〈φn+1, ψj〉 = 0.

Hence, setting ψn+1 := ψ̃n+1/‖ψ̃n+1‖ gives the new orthonormal element, such that we have

span {ψ1, ψ2, . . . , ψn, ψn+1} = span {φ1, φ2, . . . , φn, φn+1}. 2
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From now on, we will focus on subsets that {e1, e2, . . . , } that are orthonormal.

Theorem 3.53 (orthogonal projection onto finite dimensional subspace)

Let H be a Hilbert space with inner product 〈·, ·〉, and let {e1, e2, . . . , en, . . .} be an or-

thonormal set. Define Un := span {e1, . . . , en}, and let Pn : H → Un be the orthogonal

projection onto Un. Then for every x ∈ H,

(i) Pnx =
n∑

k=1

〈x, ek〉 ek,

(ii) ‖Pnx‖2 =
n∑

k=1

|〈x, ek〉|2,

(iii) ‖x− Pnx‖2 = ‖x‖2 −
n∑

k=1

|〈x, ek〉|2.

Proof of Theorem 3.53: As Pn is an orthogonal projection onto Un, we know that

Pnx =

n∑

k=1

αk ek. (3.3.1)

with some coefficients α1, α2, . . . , αn ∈ K. Taking the inner product with eℓ, ℓ = 1, 2, . . . , n, on

both sides, gives

〈Pnx, eℓ〉 =

〈
n∑

k=1

αk ek, eℓ

〉
=

n∑

k=1

αk 〈ek, eℓ〉︸ ︷︷ ︸
= δk,ℓ

= αℓ.

As Pn is an orthogonal projection onto Un, we have Pnek = ek for all k = 1, 2, . . . , n and

〈Pnx, eℓ〉 = 〈x, Pneℓ〉 = 〈x, eℓ〉 for ℓ = 1, 2, . . . , n, giving

αℓ = 〈Pnx, eℓ〉 = 〈x, eℓ〉, ℓ = 1, 2, . . . , n. (3.3.2)

Substituting (3.3.2) into (3.3.1) proves (i).

Using the orthonormality again, we see that (using (i))

‖Pnx‖2 =

〈
n∑

k=1

〈x, ek〉 ek,

n∑

ℓ=1

〈x, eℓ〉 eℓ

〉
=

n∑

k=1

n∑

ℓ=1

〈x, ek〉 〈x, eℓ〉 〈ek, eℓ〉︸ ︷︷ ︸
= δk,ℓ

=

n∑

k=1

|〈x, ek〉|2,

which proves (ii).

Finally, from the properties of an orthogonal projection

〈x− Pnx, Pnx〉 = 〈x, Pnx〉 − 〈Pnx, Pnx〉 = 〈x, Pnx〉 − 〈x, P 2
nx〉 = 〈x, Pnx〉 − 〈x, Pnx〉 = 0,

where we have used P 2
n = Pn in the second last step. Thus x−Pnx is orthogonal to Pnx. Hence,

Pythagoras theorem gives

‖x− Pnx‖2 + ‖Pnx‖2 = ‖x‖2 ⇔ ‖x− Pnx‖2 = ‖x‖2 − ‖Pnx‖2,
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and this together with (ii) leads to (iii). 2

Definition 3.54 (Fourier coefficients)

Let H be a Hilbert space with inner product 〈·, ·〉, and let {e1, e2, . . .} be an orthonormal set.

Let x ∈ H. The numbers

〈x, ek〉, k = 1, 2, . . . ,

are called the Fourier coefficients of x with respect to the orthonormal set {e1, e2, . . .}.

From Theorem 3.53 (ii) and (iii) we have ‖Pnx‖2 = ‖x‖2 − ‖x − Pnx‖2, which implies that

‖Pnx‖2 ≤ ‖x‖2. As a bounded increasing sequence in R converges and

‖Pnx‖2 =

n∑

k=1

|〈x, ek〉|2 ≤ ‖x‖2,

we see that limn→∞ ‖Pnx‖2 exists and satisfies

∞∑

k=1

|〈x, ek〉|2 = lim
n→∞

‖Pnx‖2 ≤ ‖x‖2.

This relation is called the Bessel inequality. Hence, we have proved the first part of the

following theorem.

Theorem 3.55 (Bessel inequality and series expansion of projection onto spanM)

Let H be a Hilbert space with inner product 〈·, ·〉, and let M = {e1, e2, . . . } be an orthonormal

set. Then the following holds true:

(i) Bessel inequality: For any x ∈ X

∞∑

k=1

|〈x, ek〉|2 ≤ ‖x‖2. (3.3.3)

(ii) The series

y :=

∞∑

k=1

〈x, ek〉 ek (3.3.4)

is convergent, and the vector y coincides with the orthogonal projection Px of x

on the closed subspace span (M). In other words, Px is the best approximation

of x in span (M).

Proof of Theorem 3.55: The Bessel inequality was derived before we stated the theorem. It

remains to prove (ii). As a preparation we verify that spanM is a closed subspace of H . By

definition of the closure, spanM is closed, and spanM is by definition a subspace. It remains

to show that spanM is closed under addition and scalar multiplication. For any x, y ∈ spanM ,

there exist sequences (xn)n∈N, (yn)n∈N ⊂ spanM such that limn→∞ xn = x and limn→∞ yn = y.

As, for any α, β ∈ K, the sequence (αxn + β yn)n∈N is in spanM and as
∥∥(αx+β y)−(αxn+β yn)

∥∥ =
∥∥α (x−xn)+β (y−yn)

∥∥ ≤ |α| ‖x−xn‖+β ‖y−yn‖ → 0 for n→ ∞,
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we see that αx+ β y is also in spanM . Hence spanM is a subspace.

To verify (ii), for a given x ∈ H , we define the sequence (yn)n∈N by

yn := Pnx =

n∑

k=1

〈x, ek〉 ek,

where Pn is as before the orthogonal projection onto Un = span {e1, e2, . . . , en}. This sequence

is a Cauchy sequence, since for n < m

‖ym − yn‖2 =

∥∥∥∥∥
m∑

k=n+1

〈x, ek〉 ek

∥∥∥∥∥

2

=

m∑

k=n+1

m∑

ℓ=n+1

〈x, ek〉 〈x, eℓ〉 〈ek, eℓ〉︸ ︷︷ ︸
= δk,ℓ

=

m∑

k=n+1

|〈x, ek〉|2

From the Bessel inequality and the previous formula we can now conclude that for every ǫ > 0

there exists an N = N(ǫ) ∈ N such that ‖ym − yn‖ < ǫ for all n,m ≥ N . Thus (yn)n∈N is a

Cauchy sequence.

As (yn)n∈N is a Cauchy sequence in the Hilbert space H it converges to some limit which we

denote by y ∈ H and which is given by (3.3.4). As yn ∈ spanM for all n ∈ N, we know that

y = limn→∞ yn ∈ spanM .

Finally, due to the fact that 〈ek, ej〉 = δj,k, we can conclude that

〈y − x, ej〉 =

〈
∞∑

k=1

〈x, ek〉 ek − x, ej

〉
=

∞∑

k=1

〈x, ek〉 〈ek, ej〉︸ ︷︷ ︸
= δj,k

−〈x, ej〉 = 〈x, ej〉 − 〈x, ej〉 = 0.

This proves that (y − x) ⊥ M and hence (x− y) ⊥ span (M) (see Lemma 3.47). As spanM is

a closed subspace, Theorem 3.32 shows that y is the best approximation of x in spanM . 2

We discuss an example to get a better feeling for these new concepts.

Example 3.56 (complex trigonometric basis polynomials)

In Example 3.19 we already encountered the complex trigonometric basis polynomials and

saw that they form an orthogonal set. By choosing the normalisation factors in (3.1.29) as

αk = (
√

2π)−1 the complex trigonometric basis polynomials become orthonormal. Thus the set

M = {ek}k∈Z
= {. . . , e−2, e−1, e0, e1, e2, . . .} ,

where

ek(x) :=
1√
2π

eikx, x ∈ [−π, π], k ∈ Z,

forms an orthonormal set in the space L2([−π, π]) with the inner product

〈f, g〉L2[−π,π] :=

∫ π

−π

f(x) g(x) dx.
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Introducing the space Un := span {e−n, . . . , e−1, e0, e1, . . . , en} of trigonometric polynomials of

degree ≤ n, the orthogonal projection onto Un is given by

(Pnf)(x) :=

n∑

k=−n

〈f, ek〉L2([−π,π]) ek(x) =

n∑

k=−n

(
1√
2π

∫ π

−π

f(y) e−iky dy

)
1√
2π

eikx

=
1

2π

n∑

k=−n

(∫ π

−π

f(y) e−iky dy

)
eikx.

For a given f ∈ L2([−π, π]), the function Pnf is the best approximation of the function f in

the space of Un of trigonometric polynomials of degree ≤ n.

Let us compute Pnf for the example f(x) = x. For k = 0, we have e0(x) = (
√

2π)−1 ei0x =

(
√

2π)−1. Hence the Fourier coefficient 〈f, e0〉L2([−π,π]) is given by

〈f, e0〉L2([−π,π]) =
1√
2π

∫ π

−π

x 1 dx =
1√
2π

[
x2

2

]π

−π

=
1√
2π

[
π2

2
− (−π)2

2

]
= 0.

Using integration by parts and later-on Euler’s formula, the Fourier coefficients with k 6= 0 are

given by

〈f, ek〉L2([−π,π]) =
1√
2π

∫ π

−π

x e−ikx dx =
1√
2π

([
x
e−ikx

−ik

]π

−π

−
∫ π

−π

e−ikx

−ik dx

)

=
1√
2π

([
x
e−ikx

−ik

]π

−π

−
[
e−ikx

(−ik)2

]π

−π

)

=
1√
2π

([
π
e−ikπ

−ik − (−π)
eikπ

−ik

]
−
[
e−ikπ

−k2
− eikπ

−k2

])

=
1√
2π

(−π
ik

(
eikπ + e−ikπ

)
− 1

k2

(
eikπ − e−ikπ

))

=
1√
2π

(−2π

ik
cos(kπ) − 2i

k2
sin(kπ)

)

=

√
2π i

k
(−1)k,

where we used that sin(kπ) = 0 and cos(kπ) = (−1)k for all k ∈ Z. Thus the orthogonal

projection Pnf of f(x) = x onto the space of trigonometric polynomials of degree n is given by

(Pnf)(x) =

−1∑

k=−n

√
2π i

k
(−1)k 1√

2π
eikx +

n∑

k=1

√
2π i

k
(−1)k 1√

2π
eikx

=

−1∑

k=−n

i

k
(−1)k eikx +

n∑

k=1

i

k
(−1)k eikx

=
n∑

k=1

i

−k (−1)−k e−ikx +
n∑

k=1

i

k
(−1)k eikx
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=

n∑

k=1

i

k
(−1)k

(
eikx − e−ikx

)

=
n∑

k=1

i

k
(−1)k 2i sin(kx)

=
n∑

k=1

2 (−1)k+1

k
sin(kx),

where we have again used Euler’s formula.

Finally we verify the Bessel inequality for this example:

n∑

k=−n

∣∣〈f, ek〉L2([−π,π])

∣∣2 =

−1∑

k=−n

∣∣∣∣∣

√
2π i

k
(−1)k

∣∣∣∣∣

2

+

n∑

k=1

∣∣∣∣∣

√
2π i

k
(−1)k

∣∣∣∣∣

2

=

−1∑

k=−n

2π

k2
+

n∑

k=1

2π

k2
= 4π

n∑

k=1

1

k2

and

‖f‖2
L2([−π,π]) =

∫ π

−π

|f(x)|2 dx =

∫ π

−π

x2 dx =

[
1

3
x3

]π

−π

=
2

3
π3.

As
∑∞

k=1 1/k2 = π2/6 (which is not obvious and was determined with Maple), we see that

Bessel’s inequality is indeed true for this example

‖Pnf‖2
L2([−π,π]) =

n∑

k=−n

∣∣〈f, ek〉L2([−π,π])

∣∣2 = 4π
n∑

k=1

1

k2
≤ 4π

∞∑

k=1

1

k2
= 4π

π2

6
=

2 π3

3
= ‖f‖2

L2([−π,π]).

We note that for this example we have =
∑∞

k=−∞

∣∣〈f, ek〉L2([−π,π])

∣∣2 = ‖f‖2
L2([−π,π]), and this

leads to the question whether we also have (in the L2([−π, π]) sense)
∞∑

k=−∞

〈f, ek〉L2([−π,π]) ek = f.

This relation is indeed true as we will see in Chapter 4. 2

Remark 3.57 (representation of x ∈ H as series w.r.t. orthonormal set)

The last example raises the question that will be addressed in the next section: Suppose

we have a Hilbert space H and a countable orthonormal set M = {e1, e2, . . .} in H . Under

what conditions on M do we have that

x = Px :=
∞∑

k=1

〈x, ek〉 ek (3.3.5)

and

‖x‖2 =
∞∑

k=1

|〈x, ek〉|2 (3.3.6)

for all x ∈ H? – From Theorem 3.55 we know that Px in (3.3.5) is the orthogonal projection

onto the closed subspace spanM , or, in other words, Px is the best approximation of x in

spanM . Hence we have the equality x = Px in (3.3.5) if and only H = spanM . If this is

the case then (3.3.6) follows automatically.
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3.4 Schauder Basis and Orthonormal Basis

Finally we introduce the concept of a Schauder basis of an infinite dimensional space. A par-

ticular case is the orthonormal Schauder basis in a Hilbert space, usually called orthonormal

basis or also complete orthonormal system. An orthonormal basis for a Hilbert space H

is exactly the case or an orthonormal set M = {e1, e2, . . .} in H , where spanM = H and where

consequently every x ∈ H has a series representation (3.3.5); see also Remark 3.57.

If a Hilbert space H has an orthonormal basis M = {e1, e2, . . .}, then every x ∈ X can be

expanded into a Fourier series

x =

∞∑

k=0

ck ek, (3.4.1)

with uniquely determined Fourier coefficients ck = 〈x, ek〉, k ∈ N, and the Fourier series (3.4.1)

converges with respect to the norm ‖ · ‖ of H . The function that maps x ∈ H onto the

sequence (ck)k∈N of its Fourier coefficients defines a bijection between H and ℓ2(N). Thus

we can either study x ∈ H by studying it directly or by studying its sequence (ck)k∈N of Fourier

coefficients in ℓ2(N).

At the end of the section we come back to the concept of the orthogonal sum and discuss the

concept of the orthogonal sum of several (or even infinitely many) subspaces. We

also consider the projections onto these subspaces. These ideas will play an important rule in

Chapter 5, when we discuss multiresolution analysis.

We begin by introducing a more general concept of a basis than the one you have encountered

in linear algebra.

Definition 3.58 (Schauder basis for a Banach space)

Let X be a Banach space with norm ‖ · ‖, and let M = {φ1, φ2, . . .} be a countable subset of

H. Then M is called a Schauder basis of H, if

(i) M is linearly independent, and

(ii) for every x ∈ H, there exists a sequence (xn)n∈N, where xn ∈ span {φ1, . . . , φn} for

each n ∈ N, such that

‖x− xn‖ → 0 as n→ ∞.

Equivalently, M is a Schauder basis of X if every x ∈ X has a unique representation

x =
∞∑

k=1

ck φk,

where the convergence is, of course, in the ‖ · ‖ sense.

Exercise 47 Show that the two characterisations of a Schauder basis given in Definition 3.58

are equivalent.
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Now, let H be a Hilbert space, and let {φ1, φ2, . . .} be a countable linearly independent set

in H . Then we know by the Gram-Schmidt orthonormalisation procedure (see Lemma

3.52) that there exists an orthonormal set {ψ, ψ2, . . .} such that

span {ψ1, ψ2, . . . , ψn} = span {φ1, φ2, . . . , φn} for all n ∈ N.

Thus we can restrict ourselves to orthonormal countable sets M = {e1, e2, . . .}. Further-

more, let Pn : H → Un denote the orthogonal projection onto Un = span {e1, e2, . . . , en}.
Consider x ∈ H . As Pnx is also the best approximation of x in Un we have

‖x− Pnx‖ ≤ ‖x− xn‖ → 0 as n→ ∞,

where xn is from the sequence (xn)n∈N in Definition 3.58. Hence, we can characterise an

orthonormal Schauder basis as follows.

Lemma 3.59 (characterisation of orthonormal Schauder basis)

Let H be a Hilbert space, and let M = {e1, e2, . . .} be a countable orthonormal subset of

H. Denote by Pn : H → Un the orthogonal projection onto Un := span {e1, e2, . . . , en}. The

set M forms a Schauder basis if and only if lim
n→∞

‖Pnx− x‖ = 0 for all x ∈ H.

As the orthogonal projection Pnx of x onto Un is given by

Pn(x) =
n∑

k=1

〈x, ek〉 ek,

the limit limn→∞ ‖Pnx− x‖ = 0 means that we have

x =
∞∑

k=1

〈x, ek〉 ek.

Definition 3.60 (orthonormal basis/complete orthonormal set)

Let H be a Hilbert space. An orthonormal set M = {e1, e2, . . .} is said to be an or-

thonormal basis (or a complete orthonormal set) if spanM is dense in H, that

is, spanM = H.

We note that if M = {e1, e2, . . .} is an orthonormal basis, then from Lemma 3.59 and Theorem

3.55, we see that M is an orthonormal Schauder basis for H . From Theorem 3.55 (ii), we then

obtain the following lemma.

Lemma 3.61 (representation by Fourier series)

Let H be a Hilbert space with inner product 〈·, ·〉, and let M = {e1, e2, . . .} be an orthonor-

mal basis. Then every x ∈ H can be represented by

x =

∞∑

k=1

〈x, ek〉 ek. (3.4.2)

The series in (3.4.2) is called the Fourier series of x with respect to the orthonormal

basis M = {e1, e2, . . .}.
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Proof of Lemma 3.61: By the definition of an orthonormal basis, we have that spanM = H .

And by Theorem 3.55 we know that the series

∞∑

k=1

〈x, ek〉 ek

is the orthogonal projection P : H → spanM onto spanM = H . But the orthogonal projection

onto H is the identity as Px = Ix for all x ∈ spanM = H . Hence (3.4.2) holds. 2

Now, we have the following equivalent characterisations of an orthonormal basis in H .

Theorem 3.62 (Fourier series theorem)

Let H be a Hilbert space with inner product 〈·, ·〉. Let M = {e1, e2, . . . , } be a countable

orthonormal set in H. Then, the following statements are equivalent:

(i) M is a Schauder basis of H.

(ii) Every x ∈ H can be represented by its Fourier series:

x =

∞∑

k=1

〈x, ek〉 ek.

(iii) For every x ∈ H, Parseval’s identity holds, that is,

∞∑

k=1

|〈x, ek〉|2 = ‖x‖2. (3.4.3)

Proof: (i) ⇔ (ii): That (i) and (ii) are equivalent follows from Lemma 3.59 and Lemma 3.61.

The equivalence of (ii) and (iii) can be seen in the following way: From Theorem 3.53 (ii) and

(iii), we know that, with Pnx :=
∑n

j=1〈x, ej〉 ej,

‖x‖2 − ‖x− Pnx‖2 = ‖Pnx‖2 =
n∑

j=1

|〈x, ej〉|2 for all x ∈ X. (3.4.4)

(ii) ⇒ (iii): Assume now that (ii) (and equivalently (i)) holds: Then limn→∞ ‖x − Pnx‖ = 0.

Thus taking the limit for n→ ∞ in (3.4.4) implies (iii).

(iii) ⇒ (ii): Assume (iii) is true. Then (3.4.3) implies

lim
n→∞

(
‖x‖2 −

n∑

k=1

|〈x, ek〉|2
)

= lim
n→∞

(
‖x‖2 − ‖Pnx‖2

)
= 0,

and hence from (3.4.4)

lim
n→∞

‖x− Pnx‖2 = lim
n→∞

(
‖x‖2 − ‖Pnx‖2

)
= 0
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which verifies that (ii) is true. 2

Now, having a countable orthonormal basis in a Hilbert space H , we can identify the Hilbert

space H with ℓ2(N) in the following way: We know from (3.4.3) that, for an element x ∈ H ,

the sequence of Fourier coefficients (〈x, ek〉)k∈N belongs to ℓ2(N). On the other hand, for every

sequence (ck)k∈N in ℓ2, we can construct an element x ∈ H having this sequence as its Fourier

series, namely

x =

∞∑

k=1

ck ek. (3.4.5)

We note that, if this series converges with respect to ‖·‖, then we have from the orthonormality

of the ek, k ∈ N, that 〈x, eℓ〉 =
∑∞

k=1 ck 〈ek, eℓ〉 = cℓ. The fact that for a given (ck)k∈N ∈ ℓ2(N)

the element (3.4.5) is well-defined is exactly the statement of the Riesz-Fischer theorem below.

Theorem 3.63 (Riesz-Fischer theorem)

Let H be a Hilbert space with inner product 〈·, ·〉, and let {e1, e2, . . .} form an orthonormal

basis in H. Let (cn)n∈N be a sequence from ℓ2(N). Then there exists an element x ∈ H such

that

〈x, ek〉 = ck for all k ∈ N,

and we have

x =
∞∑

k=1

ck ek.

Proof of Theorem 3.63: Given (ck)k∈N ∈ ℓ2(N) define

x :=
∞∑

k=1

ck ek = lim
n→∞

xn, where xn =
n∑

k=1

ck ek. (3.4.6)

We know that x is in H , if the sequence (xn)n∈N is a Cauchy sequence. (Indeed, since H is

complete, every Cauchy sequence converges with limit in H , and the limit of (xn)n∈N, if it

converges, is clearly x defined by (3.4.6).) For ǫ > 0 there exists and N = N(ǫ) ∈ N such that

‖xn − xm‖2 =

∥∥∥∥∥
n∑

k=m+1

ck ek

∥∥∥∥∥

2

=

n∑

k=m+1

n∑

k=m+1

ck cℓ 〈ek, eℓ〉 =

n∑

k=m+1

|ck|2 < ǫ for all n > m ≥ N,

where we have used the fact that the ek, k = 1, 2, . . ., are mutually orthogonal and that

(
∑n

k=1 |ck|2)n∈N is a Cauchy sequence because (ck)k∈N is in ℓ2(N). Thus (xn)n∈N is a Cauchy

sequence, and its limit x, defined by (3.4.6), is in H .

Taking the inner product between x and em, m ∈ N, we find

〈x, em〉 =

〈
∞∑

k=1

ck ek, em

〉
=

∞∑

k=1

ck 〈ek, em〉 = cm, m ∈ N,

where we were allowed to interchange the order of the sum and the inner product, because the

inner product is continuous and because the series converges in H . 2



68 3.4. Schauder Basis and Orthonormal Basis

From Theorem 3.62 and the Riesz-Fischer Theorem 3.63 above, we now have the following

theorem. Remember that a bijection is a function that is both injective and and surjective (or

in other words, one-to-one and onto).

Theorem 3.64 (bijection between ℓ2(N) and Hilbert space with orthon. basis)

Let H be a Hilbert space with inner product 〈·, ·〉. Assume that H has a countable or-

thonormal basis. Then the function

B : H → ℓ2(N), H(x) :=
(
〈x, ek〉

)
n∈N

,

is a bijection onto ℓ2(N) and its inverse is given by

B−1 : ℓ2(N) → H, B−1
(
(ck)k∈N

)
:=

∞∑

k=1

ck ek.

Now we come back to Example 3.56 of the complex trigonometric polynomials.

Example 3.65 (complex trigonometric basis polynomials in L2([−π, π]))

In the next chapter, we will see that the complex trigonometric basis polynomials

ek(x) :=
1√
2π

eikx, k ∈ Z,

form an orthonormal basis for L2([−π, π]) endowed with the usual inner product

〈f, g〉L2([−π,π]) :=

∫ π

−π

f(x) g(x) dx.

Hence we know that for every function f ∈ L2([−π, π]) we have (in the sense that the series

converges with respect to the ‖ · ‖L2([−π,π]) norm)

f(x) =
1√
2π

∞∑

k=−∞

ck e
ikx with ck :=

1√
2π

∫ π

−π

f(x) eikx dx,

and Parseval’s identity holds true

∫ π

−π

|f(x)|2 dx =
∞∑

k=−∞

|ck|2 =
1

2π

∞∑

k=−∞

∣∣∣∣
∫ π

−π

f(x) eikx dx

∣∣∣∣
2

. 2

Exercise 48 Consider the square wave function

f(x) =





−1 if x ∈ (−π, 0),

0 if x ∈ {−π, 0, π},
1 if x ∈ (0, π).

which is in L2([−π, π]).
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(a) Compute the Fourier series of the square wave function f with respect to the orthonormal

basis of complex trigonometric basis polynomials
{
ek(x) =

1√
2π

eikx : k ∈ Z

}
.

Simplify the Fourier series as far as possible.

(b) Verify Parseval’s identity for the square wave function. (You may use Maple or another

computing program to compute the limit of the series, if required.)

Exercise 49 Find an orthonormal basis for the Hilbert space ℓ2(N) with the inner product

〈x, y〉2 =

∞∑

k=1

xk yk, x = (xk)k∈N, y = (yk)k∈N ∈ ℓ2(N).

Verify that your orthonormal basis M has the properties of an orthonormal basis!

Finally, we come back to the definition of the direct sum (see Definition 3.37) and introduce

the direct sum of multiple subspaces.

Definition 3.66 (direct sum of several subspaces)

Let H be a Hilbert space with inner product 〈·, ·〉.
(i) Let Y1, Y2, . . . , Yn be subspaces of H. We say that H is the direct sum of the subspaces

Y1, Y2, . . . , Yn, formally written as

H = Y1 ⊕ Y2 ⊕ · · · ⊕ Yn, (3.4.7)

if every vector x ∈ H has a unique representation

x = y1 + y2 + · · · + yn, yj ∈ Yj, j = 1, 2, . . . , n. (3.4.8)

(ii) Let Y1, Y2, . . . be countable infinitely many subspaces of H. We say that H is the direct

sum of the subspaces Y1, Y2, . . . , formally written as

H = Y1 ⊕ Y2 ⊕ · · · =
∞⊕

k=1

Yk, (3.4.9)

if every vector x ∈ H has a unique representation

x = y1 + y2 + · · · =
∞∑

k=1

yk, yk ∈ Yk, k ∈ N. (3.4.10)

If all subspaces Yj are pair-wise orthogonal, we call (3.4.7) and (3.4.9) an orthogonal sum.

In this case the yk, k = 1, 2, . . . , n, in (3.4.8) and the yk, k ∈ N, in (3.4.10) are mutually

orthogonal.

In the case of an orthogonal sum, we have the following more specific statement.
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Lemma 3.67 (projection on the closed subspaces of an orthogonal sum)

Let H be a Hilbert space that is the orthogonal sum of infinitely many closed subspaces

Y1, Y2, . . ., that is,

H =

∞⊕

k=1

Yk.

For each k = 1, 2, . . . , let Pk : H → Yk be the orthogonal projection onto Yk. Then

x = P1x+ P2x+ . . . =
∞∑

k=1

Pkx, (3.4.11)

and for every x we have Pkx→ O as k → ∞.

We note that an analogous statement to Lemma 3.67 holds if H is the orthogonal sum of only

finitely many orthogonal closed subspaces Y1, Y2, . . . , Yn, that is,

H =

n⊕

k=1

Yn.

If Pk : H → Yk denotes the orthogonal projection onto Yk, them for every x ∈ H

x =

n∑

k=1

Pkx.

This follows immediately from Lemma 3.67 by letting Yn+1 = Yn+2 = . . . = {O}.

Proof of Lemma 3.67: First we note that from the definition of the orthogonal sum the

series (3.4.10) converges and hence

‖x‖2 =

∥∥∥∥∥
∞∑

k=1

yk

∥∥∥∥∥

2

=

〈
∞∑

j=1

yj,

∞∑

k=1

yk

〉
=

∞∑

j=1

∞∑

k=1

〈yj, yk︸ ︷︷ ︸
= δj,k

〉 =

∞∑

k=1

‖yk‖2, (3.4.12)

where we have used 〈yj, yk〉 = 0 if j 6= k as the the subspaces Yj and Yk are mutually orthogonal.

From (3.4.12), we see that

lim
k→∞

‖yk‖2 = 0 ⇔ lim
k→∞

‖yk‖ = 0.

The statement follows if we can show that (3.4.11) holds true. Indeed then we have two sum

representations (3.4.10) and (3.4.11) of x, and Pkx ∈ Yk. As the representation (3.4.10) is

unique, we can conclude that yk = Pkx and hence limk→∞ ‖Pkx‖ = limk→∞ ‖yk‖ = 0.

It remains to verify (3.4.11). To do this we apply the orthogonal projection Pj to the represen-

tation (3.4.10) of x. Then

Pjx = Pj

(
∞∑

k=1

yk

)
=

∞∑

k=1

Pjyk = Pjyj = yj ,
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where we have used Pjyk = 0 if k 6= j since Yk is orthogonal to Yj and that Pjyj = yj since

yj ∈ Yj. (We note that we are allowed to interchange the order of Pj and the sum as the series

converges in H .) 2

The decomposition of a space into an infinite sum of orthogonal subspaces is quite important

and we will use this later-on frequently when we discuss wavelets. We give one example here

in the context of trigonometric functions.

Example 3.68 (complex trigonometric basis polynomials)

Let {ek : k ∈ Z} denote the orthonormal set of complex trigonometric basis polynomials

ek(x) :=
1√
2π

eikx.

Even though we will only verify this in the next chapter we make now use of the fact that

M = {ek : k ∈ Z} is an orthonormal basis for L2([−π, π]). We define the orthogonal subspaces

Y1, Y2, . . . by

Y0 := span {e0} = span

{
e0(x) =

1√
2π

}

Yn := span
{
ek : 2n−1 ≤ |k| < 2n

}
= span

{
ek(x) =

1√
2π

eikx : 2n−1 ≤ |k| < 2n

}
, n ∈ N.

Then we have the orthogonal sum

L2([−π, π]) =
∞⊕

n=0

Yn,

and we may think of the orthogonal projection Pn : L2([−π, π]) → Yn as a bandpass filter as

functions in Yn contains only linear combinations of complex trigonometric basis polynomials

with degrees from the band 2n−1 ≤ |k| < 2n, that is, k ∈ {−2n + 1, . . . ,−2n−1 − 1, 2n−1} ∪
{2n−1, 2n−1 + 1, . . . , 2n − 1}. 2
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Chapter 4

Classical Trigonometric Fourier Series

In this chapter we consider the approximation of 2π-periodic functions by a classical

trigonometric Fourier series. This is a very important and classical approximation tech-

nique, and we have already encountered the approximation by trigonometric polynomials briefly

as an example in the last chapter. The approximation of functions by a classical trigonometric

Fourier series is still widely used in industrial applications.

To analyse the approximation of 2π-periodic functions by classical trigonometric Fourier series,

we will draw on all the concepts that we have learned in the last chapter, such as, orthogonal

projection, best approximation, Fourier series, and an orthonormal basis. To use these concepts

in a concrete context will give them more meaning and will hopefully help you to get a better

understanding of them.

A 2π-periodic function is a function f : R → R satisfying f(x + 2π) = f(x) for all x ∈ R.

Such a function is uniquely determined by its values on the interval [−π, π] with the end points

−π and π identified (as the considered functions are 2π-periodic). To distinguish [−π, π] with

the endpoints identified from the normal interval [−π, π], we will write T for [−π, π] with

the endpoints identified.

From a topological point of view, identifying the endpoints of [−π, π] provides a circle, and

we can in fact interpret T as a parameterisation of the unit circle {x ∈ R2 : ‖x‖2 = 1}
via exp(iφ), φ ∈ T. Thus it is quite natural to use complex trigonometric basis polynomials

ek(x) = (
√

2π)−1 exp(ikx), k ∈ Z, (or equivalently the real trigonometric basis polynomials

sin(kx), cos(kx), k ∈ N0) to approximate functions that are 2π-periodic.

Sets of 2π-periodic functions: We denote the set of 2π-periodic functions on [−π, π] that

are continuous by C(T). The space C(T) of 2π-periodic continuous functions on T is equipped

with the supremum norm

‖f‖C([−π,π]) = sup
x∈[−π,π]

|f(x)|, f ∈ C(T). (4.0.1)

The set of 2π-periodic functions f on [−π, π] that are square-integrable, that is, for which

73
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‖f‖L2([−π,π]) <∞, is denoted by L2(T). L2(T) is equipped with the usual L2([−π, π]) norm

‖f‖L2([−π,π]) =

(∫ π

−π

|f(x)|2 dx

)1/2

, f ∈ L2(T), (4.0.2)

and the L2([−π, π]) inner product

〈f, g〉L2([−π,π]) =

∫ π

−π

f(x) g(x) dx. (4.0.3)

The set of of 2π-periodic functions on [−π, π] that are k-times continuously differentiable is

denoted by Ck(T). Here we mean that f ∈ Ck(T) is k-times continuously differentiable on

[−π, π] in the sense that f ∈ Ck((−π, π)) and that at x = −π the right-sided derivatives up to

order k and at x = π the left-sided derivatives up to order k exist and are finite and that f (ℓ)

is a continuous function on [−π, π] for ℓ = 0, 1, 2, . . . , k.

In this chapter we will consider one particular L2([−π, π])-orthonormal basis for L2(T) that

we have already encountered in the previous chapter: the complex trigonometric basis

polynomials

ek(x) :=
1√
2π

exp(ikx), k ∈ Z,

(see Examples 3.19, 3.56, 3.65, and 3.68). Once we have verified that these functions form an

L2([−π, π])-orthonormal basis for L2(T), we know from the previous chapter that every 2π-

periodic function in L2(T) can be represented by a Fourier series with respect to the complex

trigonometric basis polynomials. To show that the complex trigonometric basis polynomials

form an L2([−π, π])-orthonormal basis for L2(T) is the main aim of this chapter. The non-trivial

proof will be given with the help of Fejér’s theorem.

Studying classical trigonometric Fourier series and the discrete Fourier transform in this chapter

will prepare us for studying the (discrete) wavelet transform in the later chapters. As we

will see later-on, wavelets provide features that are not given by the classical trigonometric

Fourier series; they provide a step beyond the capabilities of classical trigonometric Fourier

series analysis, and have been developed over the last 30 years. In contrast, Fourier series are

a classical tool that goes back over 200 years.

Remark 4.1 (difference between L2([−π, π]) and L2(T))

The distinction between the spaces L2([−π, π]) and L2(T) is an ‘artificial’ one, since these

spaces are identical from the Lebesgue integral point of view. Indeed, two functions in

L2([−π, π]) are equivalent if they have the same values apart from sets of Lebesgue measure

zero. (‘Equivalent’ means here that in the topology of L2([−π, π]) these functions can be

identified. More precisely f and g in L2([−π, π]) are equivalent, if ‖f − g‖L2([−π,π]) = 0.)

The set {π} has Lebesgue measure zero, and therefore any function f ∈ L2([−π, π]) can

be identified with the function g ∈ L2(T) defined by g(x) := f(x) for x ∈ [−π, π) and

g(π) := f(−π).
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4.1 Fejér’s Theorem: Complex Trigonometric Basis Poly-

nomials are an L2([−π, π])-Orthonormal Basis for L2(T)

Our aim is to show that the family of complex trigonometric basis polynomials
{
ek(x) =

1√
2π

eikx : k ∈ Z

}
(4.1.1)

is an L2([−π, π])-orthonormal basis for L2(T) endowed with the L2([−π, π]) norm (4.0.2)

and the L2([−π, π]) inner product (4.0.3).

From the results in the previous chapter, we know already (see Examples 3.19, 3.56, 3.65, and

3.68) that {ek : k ∈ Z} is an L2([−π, π])-orthonormal set in L2(T). To show that {ek : k ∈ Z}
is an L2([−π, π])-orthonormal basis for L2(T), we have to show that span {ek : k ∈ Z} is dense

in L2(T), that is, we have to show that for every f ∈ L2(T) and every ǫ > 0, there exists an

g ∈ span {ek : k ∈ Z} such that

‖f − g‖L2([−π,π]) =

(∫ π

−π

|f(x) − g(x)|2 dx

)1/2

< ǫ.

We will achieve this in two steps:

(i) First, we will show that every continuous function f ∈ C(T) can be approximated arbi-

trarily well by a functions from span {ek : k ∈ Z} with respect to the supremum norm

(4.0.1). Since the supremum norm (4.0.1) is stronger then the L2([−π, π]) norm (4.0.2),

this implies that we can also approximate f ∈ C(T) arbitrarily well by functions from

span {ek : k ∈ Z} with respect to the L2([−π, π]) norm.

(ii) Then, we will use the fact that C(T) is dense in L2(T) endowed with the L2([−π, π]) norm

(4.0.2). This immediately implies that span {ek : k ∈ Z} is dense in L2(T) endowed with

the L2([−π, π]) norm (4.0.2). Thus every function in L2(T) can be approximated by a

Fourier series with respect to the L2([−π, π])-orthonormal set of complex trigonometric

basis polynomials {ek : k ∈ Z}. Hence the set of complex trigonometric basis polynomials

{ek : k ∈ Z} is an L2([−π, π])-orthonormal basis for L2(T).

To show that the complex trigonometric polynomials can be used to approximate functions in

C(T) arbitrarily well with respect to the supremum norm (4.0.1), we have to prove the following:

Given an arbitrary function f ∈ C(T), we have to find a sequence (gn)n∈N of functions in

span {ek : k ∈ Z} that converges uniformly on [−π, π] (that is, with respect to the supremum

norm (4.0.1)) to f . In formulas, limn→∞ ‖f − gn‖C([−π,π]) = 0.

Once we have verified that {ek : k ∈ Z} forms an L2([−π, π])-orthonormal basis for L2(T) with

the L2([−π, π]) norm, we have for any f ∈ L2(T)

f(x) =
∞∑

k=−n

〈f, ek〉L2([−π,π]) ek(x) =
1

2π

∞∑

k=−n

(∫ π

−π

f(y) e−iky dy

)
eikx, (4.1.2)
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where the equality holds in the L2([−π, π]) sense and for almost all x ∈ T. In particular, this

implies that the sequence (Snf)n∈N0 of partial sums of the complex trigonometric Fourier

series (4.1.2)

Snf(x) :=
n∑

k=−n

〈f, ek〉L2([−π,π]) ek(x) =
1

2π

n∑

k=−n

(∫ π

−π

f(y) e−iky dy

)
eikx, n ∈ N0. (4.1.3)

converges with respect to the L2([−π, π]) norm to f .

Therefore it would be natural to investigate whether the sequence (Snf)n∈N0 of partial sums

(4.1.3) also converges uniformly on [−π, π] (that is, with respect to the supremum norm (4.0.1))

to the function f . However, unfortunately the sequence (Snf)n∈N0 does not necessarily con-

verge uniformly on [−π, π] to f , and therefore we need to consider another sequence of linear

combinations of the complex trigonometric basis polynomials.

For f ∈ C(T), consider the linear combination in Um = span {ek : k = −m, . . . ,m} defined by

Fm(x) :=
1

m+ 1

m∑

n=0

Snf(x), m ∈ N0, (4.1.4)

where the Snf are defined by (4.1.3). The function Fm is also referred to as a Cesaro mean,

since it has the nature of a weighted mean in the following sense: Replacing in (4.1.4) the Snf

by their definition (4.1.3) yields

Fm(x) =
1

m+ 1

m∑

n=0

Snf(x)

=
1

m+ 1

m∑

n=0

n∑

k=−n

〈f, ek〉L2([−π,π]) ek(x)

=
m∑

k=−m

m+ 1 − |k|
m+ 1

〈f, ek 〉L2([−π,π]) ek(x),

and we see that the weighting factor (m+1−|k|)/(m+1) declines with increasing |k|. However,

for any fixed k ∈ Z, if we increase m, we find that

lim
m→∞

m+ 1 − |k|
m+ 1

= 1,

that is, intuitively we expect the series (Fm)m∈N0 to have the same L2(T) limit as (Snf)n∈N0.

To be able to better manipulate and investigate the functions Fm, m ∈ N0, we derive a different

representation of these functions as a convolution with the Fejér kernel. Interchanging the

sum and integral in (4.1.3) yields

Snf(x) =
1

2π

n∑

k=−n

(∫ π

−π

f(y) e−iky dy

)
eikx
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=
1

2π

∫ π

−π

n∑

k=−n

f(y) e−iky eikx dy

=
1

2π

∫ π

−π

f(y)

(
n∑

k=−n

eik(x−y)

)
dy.

Substituting this expression into the definition (4.1.4) of Fm gives

Fm(x) =
1

m+ 1

m∑

n=0

Snf(x)

=
1

m+ 1

m∑

k=0

1

2π

∫ π

−π

f(y)

(
n∑

k=−n

eik(x−y)

)
dy

=

∫ π

−π

f(y)

(
1

2π (m+ 1)

m∑

n=0

n∑

k=−n

eik(x−y)

)
dy, (4.1.5)

where we have interchanged the sum and the integral. Hence, we introduce the Fejér kernel.

Definition 4.2 (Fejér kernel)

For m ∈ N0, the Fejér kernel Km : R → C is defined by

Km(t) :=
1

2π (m+ 1)

m∑

n=0

n∑

k=−n

eikt, t ∈ R. (4.1.6)

For m = 1, 5, 10 the Fejér kernel is shown in Figure 4.1.

t

32-2 0-3

0.4

1.2

0

1.6

1

0.8

-1

Figure 4.1: Fejér’s kernel Km for m = 1 (red), m = 5 (green) and m = 10 (yellow).

With the Fejér kernel, (4.1.5) has the representation

Fm(x) =

∫ π

−π

f(y)Km(x− y) dy.
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The function Fm is the convolution of f and Km. For m→ ∞, the Fejér kernel Km converges

to the delta distribution δx, given by

δx(f) =

∫ π

−π

f(y) δx(y) dy := f(x).

More precisely, we have for any f ∈ C(T) and any x ∈ [−π, π] that

δx(f) = f(x) = lim
m→∞

Fm(x) = lim
m→∞

∫ π

−π

f(y)Km(x− y) dy. (4.1.7)

That (4.1.7) holds is not obvious and follows as a special case from Fejér’s theorem below.

Before we state Fejér’s theorem, we state some elementary properties of the Fejér kernel.

Lemma 4.3 (elementary properties of the Fejér kernel)

Let m ∈ N0. The Fejér kernel Km : R → C, defined by (4.1.6), has the following proper-

ties:

(i) Km(0) = (m+ 1)/(2π).

(ii) Km is real-valued.

(iii) Km has the representation

Km(t) =
1

2π (m+ 1)

(
m+ 1 + 2

m∑

n=0

n∑

k=1

cos(kt)

)
, t ∈ R. (4.1.8)

(iv) Km(t) ≤ Km(0) for all t ∈ R.

The proof of this lemma is left as an exercise.

Exercise 50 Prove Lemma 4.3.

From (4.1.8) it seems also plausible that the Fejér kernel has small values for t ∈ [−π, π]

sufficiently far away from t = 0.

Our first aim of this chapter is to prove Fejér’s theorem below.

Theorem 4.4 (Fejér’s theorem)

For m ∈ N0, let Km : R → C denote the Fejér kernel, defined by (4.1.6). Let f ∈ C(T).

Then the sequence of complex trigonometric polynomials (Fm)m∈N0, defined by

Fm(x) =

∫ π

−π

f(y)Km(x− y) dy, (4.1.9)

converges uniformly on [−π, π] to f , that is,

lim
m→∞

‖Fm − f‖C([−π,π]) = lim
m→∞

(
sup

x∈[−π,π]

|Fm(x) − f(x)|
)

= 0.



4. Classical Trigonometric Fourier Series 79

The reader is reminded that the functions Fm in Theorem 4.4 are complex trigonometric

polynomials of degree m.

Before proving Theorem 4.4 we establish some deeper properties of the Fejér kernel in the next

section. These properties are needed in the proof of Fejér’s theorem.

Exercise 51 Let (gn)n∈N be a sequence of functions in C([−π, π]) that converges uniformly to

a function g ∈ C([−π, π]), that is,

lim
n→∞

‖gn − g‖C([−π,π]) = lim
n→∞

(
sup

x∈[−π,π]

|gn(x) − g(x)|
)

= 0.

Show that the sequence (gn)n∈N also satisfies limn→∞ gn(x) = g(x) for all x ∈ [−π, π].

Exercise 52 Let (gn)n∈N be a sequence of functions in C([−π, π]) that converges uniformly to

a function g ∈ C([−π, π]), that is,

lim
n→∞

‖gn − g‖C([−π,π]) = lim
n→∞

(
sup

x∈[−π,π]

|gn(x) − g(x)|
)

= 0.

Show that (gn)n∈N also converges to g in the L2([−π, π]) sense, that is,

lim
n→∞

‖gn − g‖L2([−π,π]) = lim
n→∞

(∫ π

−π

|gn(x) − g(x)|2 dx

)1/2

= 0.

Exercise 53 Use Fejér’s theorem to conclude the following statement:

span
{
ek(x) = eikx : k ∈ Z

} ‖·‖C([−π,π])

= C(T),

that is, the span of the complex trigonometric basis polynomials is dense in C(T) endowed with

the supremum norm ‖f‖C([−π,π]) := supx∈[−π,π] |f(x)|.

4.2 Properties of the Fejér Kernel

Our first lemma provides a closed form representation of the Fejér kernel.

Lemma 4.5 (closed form representation for the Fejér kernel)

The Fejer kernel Km(t), defined by (4.1.6), has the representation

Km(t) =
1

2π(m+ 1)

[
sin
(

(m+1)t
2

)]2

[
sin(t/2)

]2 , t ∈ R, (4.2.1)

where the equality (4.2.1) is pointwise at all t ∈ R.
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Proof of Lemma 4.5: We have to distinguish two separate cases: (i) t = ℓ π with ℓ ∈ Z, and

(ii) t 6= ℓ π for all ℓ ∈ Z.

Case (i): Let t = ℓ π with ℓ ∈ Z. Then

eiℓπ =

{
1 = ei0 if ℓ is even,

−1 = eiπ if ℓ is odd.

Thus we see that Km(t), defined by (4.1.6), satisfies

Km(ℓ π) =





Km(0) =
(m+ 1)

2π
if ℓ is even,

Km(π) =
1

2π (m+ 1)
if ℓ is odd and m is even,

Km(π) = 0 if ℓ is odd and m is odd,

where Km(0) = (m+ 1)/(2π) is Lemma 4.3 (i), and where the formula for Km(π) follows from

eiπ = −1 and

Km(π) =
1

2π (m+ 1)

m∑

n=0

n∑

k=−n

(−1)k =
1

2π (m+ 1)

m∑

n=0

(−1)n =





1

2π (m+ 1)
if m is even,

0 if m is odd.

By evaluating the right-hand side in (4.2.1) for t = 0 and t = ℓπ, ℓ ∈ Z, explicitly, it can be

shown that (4.2.1) indeed holds for t = 0 and t = ℓπ with ℓ ∈ Z. This is left as an exercise.

Case (ii): Now let z = eit with t 6= ℓπ where ℓ ∈ Z. For brevity, set z = eit. Then we have

2π (m+ 1)Km(t) =

m∑

n=0

n∑

k=−n

zk. (4.2.2)

As t ∈ R, we then find z̄ = e−it = (eit)−1 = z−1. Thus using z−1 = z̄ and z̄ z = 1 and the

formula for the geometric sum, we can transform the inner sum as follows

n∑

k=−n

zk = z̄n
n∑

k=−n

zn zk = z̄n
n∑

k=−n

zn+k = z̄n
2n∑

k=0

zk = z̄n 1 − z2n+1

1 − z
=
z̄n − zn+1

1 − z
. (4.2.3)

Therefore, substituting (4.2.3) into (4.2.2) and using again the geometric sum and z̄ z = 1 and

z̄ = z−1 and finally the binomial formula a2 − 2 a b+ b2 = (a− b)2,

2π (m+ 1)Km(t) =

m∑

n=0

z̄n − zn+1

1 − z

=
1

1 − z

(
m∑

n=0

z̄n − z

m∑

n=0

zn

)

=
1

1 − z

(
1 − z̄m+1

1 − z̄
− z (1 − zm+1)

1 − z

)
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=
1

1 − z

(
1 − z̄m+1

1 − z̄
+

1 − zm+1

1 − z̄

)

=
1

|1 − z|2
(
2 − z̄m+1 − zm+1

)

= − zm+1 − 2 + z−m−1

|1 − z|2

= −
(
z

m+1
2

)2 − 2 +
(
z−

m+1
2

)2

|1 − z|2

= −
(
z

m+1
2 − z−

m+1
2

)2

|1 − z|2 . (4.2.4)

Now, using |eit/2| = 1 and Euler’s formula, the denominator is given by

|1 − z|2 = |1 − eit|2 = |eit/2 (e−it/2 − eit/2)|2 = |eit/2 − e−it/2|2 =
(
2| sin(t/2)|

)2
=
(
2 sin(t/2)

)2
.

(4.2.5)

Moreover, using z−1 = z̄ and z̄ℓ = zℓ for z = eit and Euler’s formula, the numerator equals

(
z

m+1
2 − z−

m+1
2

)2
=
(
ei m+1

2
t − e−i m+1

2
t
)2

=

[
2i sin

(
(m+ 1)t

2

)]2

= −
[
2 sin

(
(m+ 1)t

2

)]2

.

(4.2.6)

Now the formula (4.2.1) follows from substituting (4.2.5) and (4.2.6) into (4.2.4). 2

Lemma 4.6 (properties of the Fejér kernel)

The Fejér kernel possesses the following properties:

(i) The Fejér kernel is 2π-periodic, that is, Km(t) = Km(t+ 2π) for any t ∈ R.

(ii) The Fejér kernel is an even function, that is, Km(t) = Km(−t) for all t ∈ R.

(iii) Km(t) ≥ 0 for all t ∈ R.

(iv) The Fejér kernel is normalised such that

∫ π

−π

Km(t) dt = 1. (4.2.7)

(v) For any δ ∈ (0, π)

∫

t∈[−π,π]\(−δ,δ)

Km(t) dt→ 0 as m→ ∞. (4.2.8)

Proof of Lemma 4.6:

(i) The 2π-periodicity of Km follows directly from the formula (4.1.6) of the Fejér kernel Km.

(ii) That Km is an even function follows from the closed form representation (4.2.1) of Km and
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from sin(−t) = − sin(t) for all t ∈ R. Indeed,

Km(−t) =
1

2π(m+ 1)

[
sin
(

(m+1)(−t)
2

)]2

[
sin(−t/2)

]2

=
1

2π(m+ 1)

[
− sin

(
(m+1)t

2

)]2

[
− sin(t/2)

]2

=
1

2π(m+ 1)

[
sin
(

(m+1)t
2

)]2

[
sin(t/2)

]2

= Km(t) for all t ∈ R.

(iii) Km(t) ≥ 0 for all t ∈ R follows directly from the closed form representation (4.2.1) in

Lemma 4.5.

(iv) The normalization (4.2.7) in property (iv) follows from (4.1.6) and the equality

∫ π

−π

eiktdt =

{
2π if k = 0,

0 if k ∈ Z \ {0}.

Indeed, using the last formula and the original definition (4.1.6) of Km,

∫ π

−π

Km(t) dt =

∫ π

−π

(
1

2π (m+ 1)

m∑

n=0

n∑

k=−n

eikt

)
dt

=
1

2π (m+ 1)

m∑

n=0

n∑

k=−n

∫ π

−π

eikt dt

=
1

2π (m+ 1)

m∑

n=0

2π

=
2π (m+ 1)

2π (m+ 1)
= 1.

(v) To prove the limit (4.2.8) in property (v), notice that we have

[
sin(t/2)

]2 ≥
[
sin(δ/2)

]2
for all t ∈ [−π, π] \ (−δ, δ).

Therefore, using the closed form representation (4.2.1) of Km and [sin(τ)]2 ≤ 1 for all τ ∈ R,

Km(t) =
1

2π(m+ 1)

[
sin
(

(m+1)t
2

)]2

[
sin(t/2)

]2 ≤ 1

2π (m+ 1)

1
[
sin(δ/2)

]2 for all t ∈ [−π, π] \ (−δ, δ).

Thus
∫

t∈[−π,π]\(−δ,δ)

Km(t) dt ≤ 1

2π (m+ 1)

∫

t∈[−π,π]\(−δ,δ)

1
[
sin(δ/2)

]2 dt
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=
1

2π (m+ 1)

2π − 2δ
[
sin(δ/2)

]2 → 0 as m→ ∞,

which proves (4.2.8).
This completes the proof. 2

Note that from the 2π-periodicity of the Fejér kernel, we see immediately
∫ π

−π

Km(t+ a) dt = 1 for all a ∈ R. (4.2.9)

Exercise 54 Verify that the right-hand side of formula (4.2.1) satisfies

1

2π(m+ 1)

[
sin
(

(m+1)ℓπ
2

)]2

[
sin(ℓπ/2)

]2 =





(m+ 1)

2π
if ℓ is even,

1

2π (m+ 1)
if ℓ is odd and m is even,

0 if ℓ is odd and m is odd.

4.3 Proof of Fejér’s Theorem

After the preparations in the last section, we can now prove Fejér’s theorem.

Proof of Theorem 4.4: Let f ∈ C(T) be an arbitrary function. We want to prove that for

any ǫ > 0 there exists an integer M = M(ǫ) ∈ N such that

‖f − Fm‖C([−π,π]) = sup
x∈[−π,π]

|f(x) − Fm(x)| < ǫ for all m ≥ M. (4.3.1)

This then implies that

lim
m→∞

‖f − Fm‖C([−π,π]) = lim
m→∞

(
sup

x∈[−π,π]

|f(x) − Fm(x)|
)

= 0,

that is, (Fm)m∈N converges uniformly on [−π, π] to f .

First we write f(x) − Fm(x) in a more convenient form. Using the equation (4.2.9) and the

2π-periodicity of Km (see Lemma 4.6 (i)) and the 2π-periodicity of f , we can write

f(x) − Fm(x) = f(x) −
∫ π

−π

f(y)Km(x− y) dy

=

∫ π

−π

f(x)K(x− y) dy −
∫ π

−π

f(y)Km(x− y) dy

=

∫ π

−π

[
f(x) − f(y)

]
Km(x− y) dy

=

∫ x+π

x−π

[
f(x) − f(y)

]
Km(x− y) dy.
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Let us change the variable with the substitution y = t + x, or equivalently, t = y − x. Then,

using Km(t) = Km(−t) for all t ∈ R (see Lemma 4.6 (ii)), the previous equality will take the

form

f(x) − Fm(x) =

∫ π

−π

[
f(x) − f(x+ t)

]
Km(−t) dt =

∫ π

−π

[
f(x) − f(x+ t)

]
Km(t) dt.

Now let us fix an arbitrary ǫ > 0. Due to the uniform continuity of f ∈ C(T), there exists a

δ = δ(ǫ) > 0 such that

sup
x∈[−π,π]

|f(x+ t) − f(x)| < ǫ

2
for all |t| ≤ δ. (4.3.2)

(That a continuous function f ∈ C([a, b]) is uniformly continuous on the bounded interval [a, b]

will be shown as an exercise.) First we split the integral over [−π, π] into one integral over

(−δ, δ) and one integral over [−π, π] \ (−δ, δ), yielding

f(x) − Fm(x) =

∫ δ

−δ

[
f(x) − f(x+ t)

]
Km(t) dt+

∫

[−π,π]\(−δ,δ)

[
f(x) − f(x+ t)

]
Km(t) dt.

Then, using Km(t) ≥ 0 for all t ∈ R (see Lemma 4.6 (i)), the uniform continuity (4.3.2) of f ,

Lemma 4.6 (iv), and the 2π-periodicity of f , we find for any x ∈ [−π, π],

|f(x) − Fm(x)|

≤
∫ δ

−δ

|f(x) − f(x+ t)|Km(t) dt+

∫

[−π,π]\(−δ,δ)

|f(x) − f(x+ t)|Km(t) dt

≤
∫ δ

−δ

ǫ

2
Km(t) dt+

∫

[−π,π]\(−δ,δ)

(
|f(x)| + |f(x+ t)|

)
Km(t) dt

≤ ǫ

2

∫ π

−π

Km(t) dt

︸ ︷︷ ︸
= 1

+

∫

[−π,π]\(−δ,δ)

(
2 sup

y∈R

|f(y)|
)
Km(t) dt

≤ ǫ

2
+ 2

(
sup

y∈[−π,π]

|f(y)|
)

︸ ︷︷ ︸
= ‖f‖C([−π,π])

∫

[−π,π]\(−δ,δ)

Km(t) dt. (4.3.3)

The last integral tends to zero as m → ∞ by Lemma 4.6 (v). Therefore there exists an

M = M(ǫ) such that

2 ‖f‖C([−π,π])

∫

[−π,π]\(−δ,δ)

Km(t) dt <
ǫ

2
for all m ≥M. (4.3.4)

Thus from (4.3.3) and (4.3.4), given ǫ > 0, there exists an M = M(ǫ) ∈ N such that

|f(x) − Fm(x)| < ǫ

2
+
ǫ

2
= ǫ for all m ≥M and for all x ∈ [−π, π].

Thus

‖f − Fm‖C([−π,π]) = sup
x∈[−π,π]

|f(x) − Fm(x)| < ǫ for all m ≥M,

which shows that (Fm)m∈N converges uniformly on [−π, π] to f . 2
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Exercise 55 Let f ∈ C([a, b]) be a continuous function on [a, b]. Show that f is uniformly

continuous on [a, b], that is, show that for every ǫ > 0 there exists a δ > 0 such that

|f(x) − f(y)| < ǫ for all x, y ∈ [a, b] with |x− y| < δ.

4.4 Completeness of the Complex Trigonometric Basis

Functions

A direct consequence of Fejér’s theorem (see Theorem 4.4) is the following corollary.

Corollary 4.7 (trigonometric polynomials are dense in C(T) w.r.t. ‖ · ‖L2([−π,π]))

Let f ∈ C(T). Then for every ǫ > 0, there exists a complex trigonometric polynomial

p ∈ span {ek(x) = (
√

2π)−1 eikx : k ∈ Z}, such that

‖f − p‖L2([−π,π]) =

(∫ π

−π

|f(x) − p(x)|2 dx

)1/2

< ǫ.

In other words,

C(T) ⊂ span

{
ek(x) =

1√
2π

eikx : k ∈ Z

} ‖·‖L2([−π,π])

.

Proof of Corollary 4.7: Given f ∈ C(T), let Fm denote the function defined by (4.1.9) in

Theorem 4.4. From Theorem 4.4, for every ǫ > 0, there exists an M = M(ǫ) such that

sup
x∈[−π,π]

|f(x) − Fm(x)| < ǫ√
2π

for all m ≥M. (4.4.1)

The function Fm is by definition in span {ek(x) = (
√

2π)−1 eikx : k = −m, . . . ,m} and hence

is a complex trigonometric polynomial of degree ≤ m. From (4.4.1) with m = M

‖f − FM‖2
L2([−π,π]) =

∫ π

−π

|f(x) − FM (x)|2 dx

≤
∫ π

−π

(
sup

y∈[−π,π]

|f(y) − FM (y)|
)2

dx

<

∫ π

−π

ǫ2

2π
dx

=
ǫ2

2π
2π = ǫ2,

which proves ‖f − FM‖L2([−π,π]) < ǫ. 2
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To show that the span of the complex trigonometric basis polynomials is dense in L2(T),

endowed with the L2([−π, π])-norm, we have to use the fact that the continuous 2π-periodic

functions on [−π, π] are dense in L2(T), that is, C(T) is dense in L2(T).

Theorem 4.8 (C([a, b]) is dense in L2([a, b]) with ‖ · ‖L2([a,b]))

The continuous functions on [a, b] are dense in L2([a, b]) with respect to the L2([a, b]) norm.

That is, for every f ∈ L2([a, b]) and for every ǫ > 0 there exists a function g ∈ C([a, b])

such that

‖f − g‖L2([a,b]) =

(∫ b

a

|f(x) − g(x)|2 dt

)1/2

< ǫ.

The proof of Theorem 4.8 demands a deep knowledge of the Lebesgue integral and can therefore

not be given in this course.

Corollary 4.7 and Theorem 4.8 allow us finally to show that {ek(x) = (
√

2π)−1 eikx : k ∈ Z} is

an L2([−π, π])-orthonormal basis for L2(T).

Theorem 4.9 ({ek : k ∈ Z} is a L2([−π, π])-orthonormal basis for L2(T))

The set of complex trigonometric basis polynomials {ek(x) = (
√

2π)−1 eikx : k ∈ Z} forms an

L2([−π, π])-orthonormal basis for L2(T) endowed with the L2([−π, π]) norm ‖·‖L2([−π,π]).

Any function f ∈ L2(T) can be represented in the L2(T) sense as the (trigonometric)

Fourier series

f(x) =
∞∑

k=−∞

f̂k ek(x) =
1√
2π

∞∑

k=−∞

f̂k e
ikx (4.4.2)

with the Fourier coefficients

f̂k := 〈f, ek〉L2([−π,π]) =

∫ π

−π

f(x) ek(x) dx =
1√
2π

∫ π

−π

f(x) e−ikx dx. (4.4.3)

Proof of Theorem 4.9: First we note that from Examples 3.19, 3.56, 3.65, and 3.68 in Chap-

ter 3 we already know that the set {ek : k ∈ Z} of complex trigonometric basis polynomials is

an L2([−π, π])-orthonormal set in L2(T). It remains to show that this L2([−π, π])-orthonormal

set is also an L2([−π, π])-orthonormal basis for L2(T).

The L2([−π, π])-orthonormal set {ek : k ∈ Z} is an L2([−π, π])-orthonormal basis for L2(T),

if span {ek : k ∈ Z} is dense in L2(T) endowed with the L2(T)-norm, that is, if for every

f ∈ L2(T) and for ǫ > 0 there exists a function g in span {ek : k ∈ Z} such that

‖f − g‖L2([−π,π]) < ǫ.

Now let f in L2(T) be arbitrary, and let ǫ > 0 be arbitrary. Then from Theorem 4.8 with

[a, b] = [−π, π] there exists h ∈ C([−π, π]) such that

‖f − h‖L2([−π,π]) <
ǫ

2
. (4.4.4)
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It is reasonably easily verified that h ∈ C([−π, π]) can in fact be chosen 2π-periodic, such that

in (4.4.4) we have h ∈ C(T). For this h ∈ C(T), from Corollary 4.7, there exists a function

g ∈ span {ek : k ∈ Z} such that

‖h− g‖L2([−π,π]) <
ǫ

2
. (4.4.5)

Hence, from the triangle inequality and (4.4.4) and (4.4.5),

‖f − g‖L2([−π,π]) ≤ ‖f − h‖L2([−π,π]) + ‖h− g‖L2([−π,π]) <
ǫ

2
+
ǫ

2
= ǫ,

which proves that span {ek : k ∈ Z} is dense in L2(T), endowed with the L2([−π, π]) norm.

The formulas (4.4.2) and (4.4.3) follow now directly from Theorem 3.62. 2

Corollary 4.10 (inner product in terms of the Fourier coefficients)

Let f, g ∈ L2(T). Then

〈f, g〉L2([−π,π]) =
∞∑

k=−∞

f̂k ĝk.

Proof of Corollary 4.10: Using (4.4.2) for f and g, the sesqui-linearity of the inner product,

the fact that the inner product 〈·, ·〉L2([−π,π]) is continuous, and the L2([−π, π])-orthonormality

〈ek, eℓ〉L2([−π,π]) = δk,ℓ of the complex trigonometric basis functions ek, we can write:

〈f, g〉L2([−π,π]) =

〈
∞∑

k=−∞

f̂k ek,

∞∑

ℓ=−∞

ĝk ek

〉

L2([−π,π])

=
∞∑

k=−∞

∞∑

ℓ=−∞

f̂k ĝℓ 〈ek, eℓ〉L2([−π,π])︸ ︷︷ ︸
= δk,ℓ

=

∞∑

k=−∞

f̂k ĝk.

In the previous formula, it is allowed to pull the infinite sums out of the inner product because

the Fourier series converges in the L2([−π, π]) sense and because the inner product is continu-

ous (see Lemma 3.10). 2

Corollary 4.11 (Fourier series of an ℓ-times continuously differentiable function)

Let f be in the space Cℓ(T) of 2π-periodic ℓ-times continuously differentiable functions on

[−π, π], and assume that the 1st to ℓth derivative are also 2π-periodic. Then the following

holds true:

(i) The Fourier coefficients of the ℓth derivative f (ℓ) of f are given by

(f̂ (ℓ))k = (ik)ℓ f̂k, k ∈ Z. (4.4.6)

(ii) If ℓ ≥ 2, then the Fourier series of f converges uniformly on [−π, π] to f .
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Proof of Corollary 4.11: For the Fourier coefficient (f̂ ′)k of the first derivative f ′ of f we

can use integration by parts to derive

(f̂ ′)k =
〈
f ′, ek

〉
L2([−π,π])

=
1√
2π

∫ π

−π

f ′(x) e−ikx dx

=
1√
2π

[
f(x) e−ikx

]π
−π

+ ik
1√
2π

∫ π

−π

f(x) e−ikx dx

= ik f̂k,

where the boundary term vanishes due to the 2π-periodicity of the function f . This verifies

(f̂ ′)k = ik f̂k, k ∈ Z, (4.4.7)

which is the formula (4.4.6) for ℓ = 1. The formula (4.4.7) for ℓ = 1 also verifies for f ′′ = (f ′)′

(f̂ ′′)k =
(
(̂f ′)′)k = ik (f̂ ′)k = ik (ik f̂k) = (ik)2 f̂k,

where we have applied (4.4.7) twice, once for the derivative of f ′ and once for the derivative of

f itself. This proves (4.4.6) for ℓ = 2. Iterating this process gives (4.4.6) for any ℓ ∈ N.

For the second statement note that ℓ ≥ 2 implies (f̂ ′′)k = −k2 f̂k which implies

|f̂k| =
|(f̂ ′′)k|
k2

, k ∈ Z \ {0}. (4.4.8)

Next we estimate (f̂ ′′)k, making use of the fact that f ∈ Cℓ(T) with ℓ ≥ 2 and hence f ′′ is

continuous on T. We find for all k ∈ Z,

|(f̂ ′′)k| =

∣∣∣∣
1√
2π

∫ π

−π

f ′′(x) e−ikx dx

∣∣∣∣

≤ 1√
2π

∫ π

−π

|f ′′(x)| |e−ikx|︸ ︷︷ ︸
= 1

dx

=
1√
2π

∫ π

−π

|f ′′(x)| dx

≤ 1√
2π

(
sup

x∈[−π,π]

|f ′′(x)|
)∫ π

−π

1 dx

=
√

2π ‖f ′′‖C([−π,π]).

Applying the last estimate in (4.4.8), we obtain

|f̂k| ≤
√

2π

k2
‖f ′′‖C([−π,π]), k ∈ Z \ {0}. (4.4.9)
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With the help of (4.4.9), we can now verify that the Fourier series converges absolutely and

uniformly on [−π, π]. Indeed, consider the series of partial sums (Snf)n∈N0 of the Fourier series

of f , defined by

Snf(x) :=

n∑

k=−n

f̂k ek(x), x ∈ [−π, π].

Then given ǫ > 0, there exists some N = N(ǫ) ∈ N such that for all n,m ≥ N , where n ≥ m,

sup
x∈[−π,π]

|Snf(x) − Smf(x)| = sup
x∈[−π,π]

∣∣∣∣∣
n∑

k=−n

f̂k ek(x) −
m∑

k=−m

f̂k ek(x)

∣∣∣∣∣

= sup
x∈[−π,π]

∣∣∣∣∣
∑

k∈Z,
m<|k|≤n

f̂k ek(x)

∣∣∣∣∣

≤ sup
x∈[−π,π]

( ∑

k∈Z,
m<|k|≤n

|f̂k| |ek(x)|
)

≤ sup
x∈[−π,π]

( ∑

k∈Z,
m<|k|≤n

√
2π

k2
‖f ′′‖C([−π,π])

1√
2π

|eikx|︸ ︷︷ ︸
≤ 1

)

≤ ‖f ′′‖C([−π,π])

∑

k∈Z,
m<|k|≤n

1

k2

≤ ‖f ′′‖C([−π,π]) 2

∫ n

m

1

t2
dt

= ‖f ′′‖C([−π,π]) 2

[
(−1)

t

]n

m

≤ ‖f ′′‖C([−π,π])
2

m
< ǫ,

where we have used (4.4.9) and the estimate from the integral test for the convergence of

a series. (More precisely, N = N(ǫ) was chosen to be smallest integer strictly larger then

2 ‖f ′′‖C([−π,π])/ǫ.) This means that (Snf)n∈N0 is a Cauchy sequence in the Banach space

C([−π, π]) endowed with the supremum norm ‖g‖C([−π,π]) = supx∈[−π,π] |g(x)|. As C([−π, π])

is complete, this Cauchy sequence (Snf)n∈N0 converges uniformly on [−π, π] to some con-

tinuous function g. As the Snf are all 2π-periodic, the uniform (and pointwise) limit g is

also 2π-periodic, hence g ∈ C(T). Because convergence in C([−π, π]) implies convergence

in L2([−π, π]), the Cauchy sequence (Snf)n∈N0 converges also in L2([−π, π]) to g. But the

L2([−π, π]) limit is unique, and therefore we know that g = f , since (Snf)n∈N0 converges in

L2([−π, π]) to f . Hence the sequence of the partial sums (Snf)n∈N0 and the Fourier series

converge uniformly on [−π, π] to f . 2

Another consequence of the fast decay of the Fourier coefficients of a smooth function is that
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we can give a convergence order and an error bound with an explicit constant for the

approximation of a smooth functions by the partial sums of its Fourier series.

Corollary 4.12 (error for approximation by the nth partial sum if f ∈ Cℓ(T))

Let f ∈ Cℓ(T), where ℓ ≥ 2, and assume that all continuous derivatives f (m) for m =

1, 2, . . . , ℓ are also 2π-periodic. Then, the nth partial sum

Snf =

n∑

k=−n

f̂k ek

is an approximation to f , which satisfies the uniform error estimate

‖f − Snf‖C([−π,π]) = sup
x∈[−π,π]

|f(x) − Snf(x)| ≤ c

nℓ−1
, (4.4.10)

where the positive constant c is explicitly given by

c :=
2

(ℓ− 1)
‖f (ℓ)‖C([−π,π]) =

2

(ℓ− 1)
sup

x∈[−π,π]

|f (ℓ)(x)|.

Since the constant can be computed explicitly, this gives us information on how many Fourier

coefficients f̂k, k = −n, . . . , n, we need to compute so that Snf has a given accuracy.

Proof of Corollary 4.12: Using Corollary 4.11 (i), we know that (f̂ (ℓ))k = (ik)ℓ f̂k, which

implies that

f̂k =

(
ī

k

)ℓ

(f̂ (ℓ))k for all k ∈ Z \ {0}. (4.4.11)

Hence we have for any x ∈ [−π, π]

|f(x) − Snf(x)| =

∣∣∣∣∣
∑

k∈Z

f̂k ek(x) −
n∑

k=−n

f̂k ek(x)

∣∣∣∣∣

≤
∑

k∈Z,
|k|>n

|f̂k| |ek(x)|

=
∑

k∈Z,
|k|>n

|f̂k|
1√
2π

|eikx|︸ ︷︷ ︸
≤ 1

≤ 1√
2π

∑

k∈Z,
|k|>n

|f̂k|

=
1√
2π

∑

k∈Z,
|k|>n

|(f̂ (ℓ))k|
|k|ℓ , (4.4.12)

where we have used (4.4.11) in the last step. Now we estimate the Fourier coefficients (f̂ (ℓ))k
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of the ℓth continuous derivative:

|(f̂ (ℓ))k| =

∣∣∣∣
1√
2π

∫ π

−π

f (ℓ)(x) e−ikx dx

∣∣∣∣

≤ 1√
2π

∫ π

−π

|f (ℓ)(x)| |e−ikx|︸ ︷︷ ︸
≤ 1

dx

≤
(

sup
x∈[−π,π]

|f (ℓ)(x)|
)

1√
2π

∫ π

−π

1 dx

=
√

2π sup
x∈[−π,π]

|f (ℓ)(x)|

=
√

2π ‖f (ℓ)‖C([−π,π]). (4.4.13)

Applying (4.4.13) in (4.4.12) and using the error estimate derived from the integral test (for

the convergence of a series of real numbers) yields

sup
x∈[−π,π]

|f(x) − Snf(x)| ≤ 1√
2π

∑

k∈Z,
|k|>n

|(f̂ (ℓ))k|
|k|ℓ

≤ 1√
2π

∑

k∈Z,
|k|>n

√
2π ‖f (ℓ)‖C([−π,π])

|k|ℓ

≤ ‖f (ℓ)‖C([−π,π])

∑

k∈Z,
|k|>n

1

|k|ℓ

≤ 2 ‖f (ℓ)‖C([−π,π])

∞∑

k=n+1

1

kℓ

≤ 2 ‖f (ℓ)‖C([−π,π])

∫ ∞

n

1

xℓ
dx

= 2 ‖f (ℓ)‖C([−π,π])

[
(−1)

(ℓ− 1) xℓ−1

]∞

n

=
2 ‖f (ℓ)‖C([−π,π])

(ℓ− 1)

1

nℓ−1
,

which proves the uniform error estimate (4.4.10). 2

Exercise 56 Let f : [−π, π] → R be defined by f(x) = (x2 − π2)3, and extend f with 2π-

periodicity to R. Use Corollary 4.12 to derive an explicit error estimate for the uniform ap-

proximation of f on [−π, π] by the partial sums Snf of its Fourier series. Give a lower bound

N on n such that

‖f − Snf‖C([−π,π]) = sup
x∈[−π,π]

|f(x) − Snf(x)| ≤ 10−3 for all n ≥ N.
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4.5 Special Cases and Examples

The next two propositions consider special cases, namely the Fourier series of an even function

and the Fourier series of an odd function in L2(T), respectively. We will prove one of these

propositions and leave the proof of the other one as an exercise.

Definition 4.13 (even function and odd function)

(i) A function f : R → R is called even (or an even function) if

f(−x) = f(x) for all x ∈ R.

(ii) A function f : R → R is called odd (or an odd function) if

f(−x) = −f(x) for all x ∈ R.

Example 4.14 (odd and even functions)

(a) sin(kx), with fixed k ∈ Z is an odd function.

(b) cos(kx), with fixed k ∈ Z is an even function.

(c) f(x) = x2 is an even function, and f(x) = x3 is an odd function

(d) Constant functions are even functions.

(e) The only function that is both even and odd is the zero function. 2

Exercise 57 Let k ∈ N0. Use the addition theorems for trigonometric functions to verify that

sin(kx) is an odd function and that cos(kx) is an even function.

Exercise 58 Show that any linear combination of even functions is also an even function.

Likewise show that any linear combination of odd functions is also an odd function.

Exercise 59 Consider the set Π(R) of all polynomials on R with complex coefficients.

(a) Determine the set Πodd(R) of all polynomials in Π(R) that are odd.

(b) Likewise determine the set Πeven(R) of all polynomials in Π(R) that are even.

(c) Give a proof that you have derived the correct sets in (a) and (b).

(d) Is each of the sets Πodd(R) and Πeven(R) a linear space? Give a proof of your answer.

The Fourier series of an even real-valued function in L2(T) is a so-called Fourier cosine series.
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Proposition 4.15 (Fourier cosine series of an even function)

Suppose f ∈ C(T) is real-valued and an even function, that is, f(−x) = f(x) for all

x ∈ [−π, π]. Then, the Fourier coefficients of f are real-valued and can be computed with

the formula

f̂k =

√
2

π

∫ π

0

f(x) cos(kx) dx, k ∈ Z. (4.5.1)

Furthermore, the Fourier series becomes now a Fourier cosine series:

f(x) =
1√
2π

f̂0 +

√
2

π

∞∑

k=1

f̂k cos(kx). (4.5.2)

The Fourier series of an odd real-valued function in L2(T) is a so-called Fourier sine series.

Proposition 4.16 (Fourier sine series of an odd function)

Suppose f ∈ C(T) is real-valued and an odd function, that is, f(−x) = −f(x) for all

x ∈ [−π, π]. Then, the Fourier coefficients of f are imaginary and are given by f̂0 = 0

and

f̂k = −i
√

2

π

∫ π

0

f(x) sin(kx) dx, k ∈ Z \ {0}.

Furthermore, the Fourier series becomes now a Fourier sine series:

f(x) =

√
2

π
i

∞∑

k=1

f̂k sin(kx) =

√
2

π

∞∑

k=1

f̃k sin(kx),

where we have defined the modified real-valued Fourier coefficients f̃k by

f̃k := i f̂k =

√
2

π

∫ π

0

f(x) sin(kx) dx, k ∈ N.

Proof of Proposition 4.15: First we show the formula for the Fourier coefficients:

We observe that for k = 0, we have ei0x = cos(0x) = 1 and therefore e0(x) = (
√

2π)−1. Thus

f̂0 =

∫ π

−π

f(x) e0(x) dx

=
1√
2π

∫ π

−π

f(x) dx

=
1√
2π

[∫ 0

−π

f(x) dx+

∫ π

0

f(x) dx

]

=
1√
2π

[
−
∫ 0

π

f(−y) dy +

∫ π

0

f(x) dx

]

=
1√
2π

[∫ π

0

f(−y) dy +

∫ π

0

f(x) dx

]
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=
1√
2π

[∫ π

0

f(y) dy +

∫ π

0

f(x) dx

]

=

√
2

π

∫ π

0

f(x) dx

=

√
2

π

∫ π

0

f(x) cos(0x) dx,

where we have used the substitution y = −x in the first integral and later-on f(−y) = f(y)

since f is even.

For k ∈ Z \ {0} we proceed as follows: Splitting the integral into two integrals over [−π, 0] and

[0, π], respectively, substituting subsequently y = −x for in the first integral, and using the fact

that f is even, we find

f̂k =

∫ π

−π

f(x) ek(x) dx

=
1√
2π

∫ π

−π

f(x) e−ikx dx

=
1√
2π

[∫ 0

−π

f(x) e−ikx dx+

∫ π

0

f(x) e−ikx dx

]

=
1√
2π

[
−
∫ 0

π

f(−y) eiky dy +

∫ π

0

f(x) e−ikx dx

]

=
1√
2π

[∫ π

0

f(−y) eiky dy +

∫ π

0

f(x) e−ikx dx

]

=
1√
2π

[∫ π

0

f(y) eiky dy +

∫ π

0

f(x) e−ikx dx

]

=
1√
2π

∫ π

0

f(x)
[
eikx + e−ikx

]
dx

=
1√
2π

∫ π

0

f(x) 2 cos(kx) dx

=

√
2

π

∫ π

0

f(x) cos(kx) dx,

where we have used Euler’s formula e±ikx = cos(kx) ± i sin(kx) in the second last step.

Thus we have proved the formula (4.5.1) for the Fourier coefficients f̂k for all k ∈ Z.

To prove the formula (4.5.2) for the Fourier series, we use the new formula (4.5.1) for the Fourier

coefficients that we have just derived. We observe that since cos(kx) = cos(−kx), we clearly

have f̂k = f̂−k for all k ∈ Z. As f is in L2(T), we have (in the L2(T)-sense)

f(x) =
1√
2π

∞∑

k=−∞

f̂k e
ikx
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=
1√
2π

f̂0 e
i0x +

1√
2π

−1∑

k=−∞

f̂k e
ikx +

1√
2π

∞∑

k=1

f̂k e
ikx

=
1√
2π

f̂0 +
1√
2π

∞∑

k=1

f̂−k e
−ikx +

1√
2π

∞∑

k=1

f̂k e
ikx

=
1√
2π

f̂0 +
1√
2π

∞∑

k=1

f̂k e
−ikx +

1√
2π

∞∑

k=1

f̂k e
ikx

=
1√
2π

f̂0 +
1√
2π

∞∑

k=1

f̂k

[
e−ikx + eikx

]

=
1√
2π

f̂0 +
1√
2π

∞∑

k=1

f̂k [2 cos(kx)]

=
1√
2π

f̂0 +

√
2

π

∞∑

k=1

f̂k cos(kx),

which proves the formula (4.5.2) for the Fourier series. 2

Exercise 60 Prove Proposition 4.16.
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Figure 4.2: The function h(x) = π
2
− |x|.

Example 4.17 (Fourier cosine series)

Let us consider the function h defined on [−π, π] by

h(x) :=
π

2
− |x| for x ∈ [−π, π],

and extended periodically to R. This function is in C(T) and L2(T). The function h is plotted

in Figure 4.2.
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Since clearly h(x) = h(−x) for all x ∈ R, the function h is even, and we can use Proposition 4.15

to compute its Fourier coefficients: For k = 0, we have (using cos(0x) = 1)

ĥ0 =

√
2

π

∫ π

0

h(x) dx =

√
2

π

∫ π

0

(π
2
− x
)

dx =

√
2

π

[
π

2
x− 1

2
x2

]π

0

=

√
2

π

[
π2

2
− π2

2

]
= 0.

For k 6= 0 we have, using sin(ℓπ) = 0 for all ℓ ∈ Z and integration by parts,

ĥk =

√
2

π

∫ π

0

(π
2
− x
)

cos(kx) dx

=

√
2

π

∫ π

0

π

2
cos(kx) dx−

√
2

π

∫ π

0

x cos(kx) dx

=

√
2

π

[
π

2

1

k
sin(kx)

]π

0

−
√

2

π

([
1

k
x sin(kx)

]π

0

− 1

k

∫ π

0

sin(kx) dx

)

= 0 − 0 −
√

2

π

[
1

k2
cos(kx)

]π

0

= −
√

2

π

1

k2

[
cos(kπ) − cos(0)

]

=

√
2

π

1

k2

[
1 − (−1)k

]

=





2
√

2√
π

1

k2
if k is odd,

0 if k is even.

Thus the Fourier series of h is the Fourier cosine series

h(x) =
ĥ0√
2π

+

√
2

π

∞∑

k=1

ĥk cos(kx)

= 0 +

√
2

π

∞∑

ℓ=0

2
√

2√
π (2ℓ+ 1)2

cos
(
(2ℓ+ 1)x

)

=
4

π

∞∑

ℓ=0

1

(2ℓ+ 1)2
cos
(
(2ℓ+ 1)x

)
,

where in the second step we have made the substitution k = 2ℓ + 1, ℓ ∈ N0, to represent all

positive odd integers (for which the Fourier coefficients are different from zero). Figure 4.3

shows some of the partial sums Snh of the Fourier series of h(x) = π
2
− |x|. 2
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Figure 4.3: Partial sums Snh for n = 1 (top left), n = 3 (top right), n = 11 (bottom left), and

n = 21 (bottom right), where h(x) := π
2
− |x|.

Example 4.18 (Gibbs phenomenon)

The sawtooth function defined by

f(x) =

{
0 if x ∈ {−π, π},
x if x ∈ (−π, π),

and extended with 2π-periodicity to R, is an odd discontinuous function with finite jumps at

x = π + 2π ℓ, ℓ ∈ Z. Indeed, we have f(−π) = −f(π) = 0 = f(π) and

f(−x) = −x = −f(x) for all x ∈ (−π, π).

Due to the 2π-periodicity, this implies that f(−x) = −f(x) for all x ∈ R. From

‖f‖2
L2([−π,π]) =

∫ π

−π

|f(x)|2 dx =

∫ π

−π

x2 dx =

[
1

3
x3

]π

−π

=
2 π3

3
<∞,

the sawtooth function f is clearly in L2(T). From Proposition 4.16 and Example 3.56, we have

that the Fourier coefficients of f are given by f̂0 = 0 and

f̂k =

√
2π i

k
(−1)k, k ∈ N,
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and that the Fourier series is the Fourier sine series given by

f(x) =

∞∑

k=1

2 (−1)k+1

k
sin(kx),

where the equality holds in the L2([−π, π]) sense.

It is easy to verify that the Fourier series does not converge uniformly on [−π, π] to the func-

tion f . Indeed, the partial sums Snf are trigonometric polynomials and thus are, in particular,

continuous functions on [−π, π]. We know from ‘Further Analysis’ that the uniform limit of a

sequence of continuous functions is also continuous. However, the function f is discontinuous

at x = −π and x = π, and therefore the sequence of partial sums (and hence of the Fourier

series) cannot converge uniformly on [−π, π].

The plots in Figure 4.4 shows from left to right the original function and its approximation

S50f . We observe strong oscillations of S50f towards the points 2π ℓ, ℓ ∈ N, which are due to

the jump discontinuity of the function f . The plots illustrate well that the Fourier series does

not converge uniformly on [−π, π] to the function f . 2

Figure 4.4: The Sawtooth function and its approximations.

Exercise 61 Consider the following odd 2π-periodic function in L2(T)

f(x) =





0 if x ∈ {−π, π},

1 − 2

π
(x+ π) if x ∈ (−π, 0),

1 − 2

π
x if x ∈ [0, π).

which is extended with 2π-periodicity to R.

(a) Sketch the function f .

(b) Verify that the function f is in L2(T).

(c) Verify that f is an odd function, that is, verify f(−x) = f(x) for all x ∈ [−π, π]. (Due to

the 2π-periodicity, it is enough to verify the condition for an odd function on the symmetric

interval [−π, π].)
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(d) Compute the Fourier coefficients of f .

(e) Compute the Fourier sine series of f .

(f) Explain in which sense the Fourier series converges.

(g) Does the Fourier series converge pointwise to f at all points x ∈ [−π, π]? Does it converge

uniformly on [π, π] to f?

4.6 The Discrete Fourier Transform

Under the Fourier transform we understand, given a function f ∈ L2(T), the computation

of an approximation of f given in form of a partial sum of the Fourier series of f , that is,

Snf(x) =
1√
2π

n∑

k=−n

f̂k e
ikx, (4.6.1)

where the Fourier coefficients f̂k are given by

f̂k =
1√
2π

∫ π

−π

f(x) eikx dx, k ∈ Z. (4.6.2)

From the material in the previous chapter, we know that Snf is the L2([−π, π])-orthogonal

projection of f onto the space

Un := span

{
ek(x) :=

1√
2π

eikx : k = −n, . . . , n
}

and that Snf is also the best approximation of f in the space Un. This means that Snf is

the ‘perfect choice’ for an approximation of f in the space Un with respect to the L2([−π, π])

norm ‖ · ‖L2([−π,π]).

However, in applications the Fourier transform often encounters the following problems:

(i) The function f itself is not known in general, but we only have its function values f(xj)

at certain discrete, sampled points xj . These sampled points are often equidistant.

(ii) The function f might be known but its Fourier coefficients (4.6.2) cannot be expressed in

analytic form (that is, the integrals in (4.6.2) cannot be evaluated).

(iii) The evaluation of the partial Fourier sum Snf is too expensive, since each evaluation needs

linear time (that is, once the Fourier coefficients are known, to evaluate Snf(x) at a point

x we need O(n) operations).

These problems were resolved with the invention of the (discrete) Fast Fourier Transform (FFT).

The success of the Fourier transform in digital image processing and signal processing is mainly

based on the FFT.

We shall now derive a variant of the (discrete) Fourier transform which can be used as

the starting point for deriving the Fast Fourier Transform (FFT). The key trick is to discretise



100 4.6. The Discrete Fourier Transform

the integrals in the Fourier coefficients with a numerical integration rule that is exact

for trigonometric polynomials of high degree. This gives a variant of the (discrete) Fourier

transform. The FFT is a method/algorithm for computing the discrete Fourier transform in a

fast and computationally cost effective way that uses only N lnN operations to compute SNf ,

where the computation of the Fourier coefficients is included in the N lnN operations.

Lemma 4.19 (trapezoidal rule)

The trapezoidal rule for the numerical integration over [0, 2π] of continuous functions

that are 2π-periodic is defined by

QN (f) :=
2π

N

N−1∑

j=0

f

(
2π j

N

)
, f ∈ C([0, 2π]). (4.6.3)

The rule QN is exact for all trigonometric polynomials of degree ≤ N − 1, that is,

QN (f) =

∫ 2π

0

f(x) dx for all f ∈ UN−1 := span

{
1√
2π

eikx : k = −(N − 1), . . . , N − 1

}
.

(4.6.4)

The proof of this well-known statement follows easily with the help of the geometric series.

Proof of Lemma 4.19: First we observe that, due to the linearity of the rule QN , it is enough

to verify (4.6.4) for a basis of UN−1. Thus it is enough to verify (4.6.4) for ek(x) = (
√

2π)−1 eikx,

k = −(N − 1), . . . , N − 1. We first compute the integral

∫ 2π

0

ek(x) dx =
1√
2π

∫ 2π

0

eikx dx =





1√
2π

∫ 2π

0

1 dx =
√

2π if k = 0,

[
1√
2π

eikx

ik

]2π

0

= 0 if k 6= 0.

Next we evaluate the trapezoidal rule, using the geometric series,

QN (ek) =
2π

N

N−1∑

j=0

ek

(
2π j

N

)
=

√
2π

N

N−1∑

j=0

exp

(
ik

2π j

N

)
=

√
2π

N

N−1∑

j=0

[
exp

(
i 2π k

N

)]j

=





√
2π

N

N−1∑

j=0

1 =

√
2π

N
N =

√
2π if k = 0,

√
2π

N

1 −
[
exp

(
i 2π k

N

)]N

1 − exp
(

i 2π k
N

) =

√
2π

N

1 − e
i 2π k

N
N

1 − e
i 2π k

N

=

√
2π

N

1 − ei 2π k

1 − e
i 2π k

N

= 0

if k ∈ {−(N − 1), . . . , N − 1} \ {0}.

Thus we see that indeed

QN(ek) =

∫ 2π

0

ek(x) dx for all k = −(N − 1), . . . , N − 1,
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and hence (4.6.4) holds true. 2

First we observe that, as functions in L2(T) are 2π-periodic and are in fact defined on R (via

periodicity), we have that

∫ π

−π

g(x) dx =

∫ 2π

0

g(x) dx for all g ∈ L2(T). (4.6.5)

Hence the trapezoidal rule (4.6.3) can also be used to numerically integrate functions

in L2(T) over [−π, π]. Thus we can use the trapezoidal rule to compute the Fourier coefficients

of a given function f ∈ L2(T).

f̂k =
1√
2π

∫ π

−π

f(x) e−ikx dx =
1√
2π

∫ 2π

0

f(x) e−ikx dx

≈ 1√
2π

QN(f e−ik·) =

√
2π

N

N−1∑

j=0

f

(
2π j

N

)
exp

(
−ik 2π j

N

)
. (4.6.6)

Now let N = 2n and let f be a trigonometric polynomial of degree ≤ n − 1, that is, assume

that f ∈ Un−1 = span {ek : k = −(n− 1), . . . , n− 1}. Then f̂k = 0 for |k| > n− 1, and

f =

n−1∑

k=−(n−1)

f̂k
1√
2π

eikx.

For k = −(n− 1) . . . , n− 1 the ≈ in (4.6.6) now actually becomes an equality, since f(x) e−ikx

is a trigonometric polynomial of degree ≤ 2(n− 1) < 2n− 1 = N − 1 and is hence in UN−1 =

U2n−1 = span {ek : k = −(2n − 1), . . . , 2n − 1}, and functions in this space are integrated

exactly by QN (see Lemma 4.19). This means that any f ∈ Un−1 is recovered exactly by

computing

(
FTn−1(f)

)
(x) :=

1

2π

n−1∑

k=−(n−1)

Q2n(f eik·) eikx. (4.6.7)

From (4.6.7) and (4.6.6) with N = 2n, we see that the evaluation of the discrete Fourier

transform
(
FTn(f)

(
x) at x (which is exact for functions in Un−1 = span {ek : k = −(n −

1), . . . , n− 1}) costs
n−1∑

k=−(n−1)

2n = (2n− 1) 2n ≈ 4n2 = O(n2)

elementary operations. (Here an elementary operation consists of one addition and one multi-

plication.) For large n, this computational cost is very high, and there is a smarter more efficient

algorithm to compute the approximation (4.6.7), the so-called (discrete) Fast Fourier trans-

form that will however not be discussed in this course. The FFT is based on considering the

special case that f ∈ U2m−1−1 and N = 2m for some m ∈ N and exploiting ‘symmetries’ to

obtain a cost effective code for computing (4.6.7).
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4.7 The Weierstrass Approximation Theorem

The Weierstrass approximation theorem is an important theorem in analysis that guarantees

that any continuous function on a bounded closed interval [a, b] can be approximated

uniformly on [a, b] by algebraic polynomials.

Theorem 4.20 (Weierstrass approximation theorem)

For any f ∈ C([a, b]) and any ǫ > 0 there exists an algebraic polynomial p such that

‖f − p‖C([a,b]) = sup
x∈[a,b]

|f(x) − p(x)| < ǫ. (4.7.1)

We note that the Weierstrass approximation theorem implies that, given f ∈ C([a, b]), there

exists a sequence (pn)n∈N of algebraic polynomials such that

lim
n→∞

‖f − pn‖C([a,b]) = lim
n→∞

(
sup

x∈[a,b]

|f(x) − pn(x)|
)

= 0. (4.7.2)

In other words, the sequence (pn)n∈N converges uniformly on [a, b] to f . (To see that

there exists a sequence (pn)n∈N such that (4.7.2) is satisfied, choose, for any n ∈ N, in (4.7.1)

ǫ = 1/n and write pn := p for an algebraic polynomial p satisfying (4.7.1) with ǫ = 1/n. Then

(pn)n∈N gives a sequence of algebraic polynomials satisfying (4.7.2).)

There are various ways of proving Theorem 4.20. In this course, we will exploit Fejér’s theorem

(see Theorem 4.4) to prove the Weierstrass approximation theorem in an easy way.

Proof of Theorem 4.20: The proof is given in two steps: Initially we consider f ∈ C([a, b])

that is (b − a)-periodic, that is, f(a) = f(b), and exploit Fejér’s theorem to prove that f can

be approximated uniformly on [a, b] by algebraic polynomials. In a second step, we consider

arbitrary f ∈ C([a, b]).

Step 1: Suppose first that f ∈ C([a, b]) is (b − a)-periodic, that is, f(a) = f(b), and define f

on all of R by extending it periodically with period (b− a). Mapping the interval [−π, π] onto

[a, b] with the affine linear function

φ(x) =
b− a

2π
(x+ π) + a

(which satisfies φ(−π) = a and φ(π) = b), we can define a function in C(T) via

g(x) := f
(
φ(x)

)
= f

(
b− a

2π
(x+ π) + a

)
.

Note that from the properties of f , this function is clearly 2π-periodic, since g(−π) = f(φ(−π)) =

f(a) = f(b) = f(φ(π)) = g(π) and since likewise g is defined periodically on the rest of R.

Fix ǫ > 0, and define (Gm)m∈N, via (4.1.9), by

Gm(x) =

∫ π

−π

g(y)Km(x− y) dy,



4. Classical Trigonometric Fourier Series 103

where Km is the Fejér kernel (see (4.1.6)). The function Gm is a linear combination of the

complex trigonometric basis polynomials eikx, k = −m. . . ,m, and is therefore a trigonomet-

ric polynomial of degree ≤ m. From Fejér’s Theorem 4.4, the sequence (Gm)m∈N converges

uniformly on [−π, π] to g ∈ C(T). Thus there exists a M = M(ǫ) such that

‖g −Gm‖C([−π,π]) = sup
x∈[−π,π]

|g(x) −Gm(x)| < ǫ

2
for all m ≥ M. (4.7.3)

The function GM is a finite linear combination of the complex trigonometric basis polynomials

ek(x) = (
√

2π)−1 eikx, k = −M, . . . ,M , and the Taylor series of each eikx converges uniformly

on [−π, π] to eikx (as eikx is a holomorphic function). Therefore there exists a polynomial

q(x), given by replacing the ek(x) = (
√

2π)−1 eikx, k = −M, . . . ,M , in GM(x) by their Taylor

polynomials of sufficiently high degree, such that

‖GM − q‖C([−π,π]) = sup
x∈[−π,π]

|GM(x) − q(x)| < ǫ

2
. (4.7.4)

Combining (4.7.3) and (4.7.4), we obtain from the triangle inequality

sup
x∈[−π,π]

|g(x) − q(x)| = ‖g − q‖C([−π,π]) ≤ ‖g −GM‖C([−π,π]) + ‖GM − q‖C([−π,π]) <
ǫ

2
+
ǫ

2
= ǫ.

(4.7.5)

Changing the variables back, that is, defining

p(t) := q
(
φ−1(t)

)
= q

(
2π

b− a
(t− a) − π

)
,

defines a polynomial, which approximates f uniformly on [a, b] with accuracy < ǫ. Indeed, from

the definition of g and p and from (4.7.5), we find

‖f − p‖C([a,b]) = sup
t∈[a,b]

|f(t) − p(t)| = sup
x∈[−π,π]

∣∣f
(
φ(x)

)
− p
(
φ(x)

)∣∣ = sup
x∈[−π,π]

|g(x) − q(x)| < ǫ.

Step 2: If f is not periodic, then we can choose the linear polynomial

s(x) =
f(a) − f(b)

b− a
(x− a) + f(b),

which satisfies s(a) = f(b) and s(b) = f(a). The function f̃ = f+s, then satisfies f̃(a) = f̃(b) =

f(a) + f(b) and is therefore periodic with period [a, b]. From Step 1, we have the existence of

a polynomial p̃, which approximates f̃ uniformly on [a, b] with at least ǫ accuracy, that is,

‖f̃ − p̃ ‖C([a,b]) = ‖(f + s) − p̃ ‖C([a,b]) = ‖f − (p̃− s)‖C([a,b]) < ǫ,

and the polynomial p = p̃− s is the desired approximation. 2
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Chapter 5

Orthogonal Wavelets

In this course we only will consider orthogonal wavelets, and will discuss the central ideas

of wavelet analysis by studying the Haar wavelet. The Haar wavelet is the simplest example

of an orthogonal wavelet.

The setting: In this chapter we work always in the space L2(R), equipped with the L2(R)

inner product

〈f, g〉L2(R) =

∫

R

f(x) g(x) dx =

∫ ∞

−∞

f(x) g(x) dx

and the corresponding induced norm

‖f‖L2(R) :=
√

〈f, f〉L2(R) =

(∫

R

|f(x)|2 dx

)1/2

.

Aim: We are interested in constructing orthonormal bases for L2(R). We stop a moment

and consider the functions eikx, k ∈ Z, which served us so well when considering Fourier series.

Unfortunately, they are not on L2(R), since

‖eikx‖L2(R) =

(∫

R

|eikx|2 dx

)1/2

=

(∫

R

1 dx

)1/2

= ∞.

This illustrates a general issue; functions in L2(R) need to decay fast enough as |x| → ∞ (in

order to guarantee that the norm ‖ · ‖L2(R) is finite).

Families of functions generated by shifting and scaling: Our introduction of wavelets

starts with function families, which are generated from one single function φ by shifting

and scaling. More precisely, we will look at functions of the form

φj,k(x) = 2j/2 φ(2jx− k)

with a fixed function φ ∈ L2(R) satisfying ‖φ‖L2(R) = 1. The first index j will always be the

scaling index (referring to the scaling of the variable with the factor 2j), while the second index
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k will always be used for shifting (for shifting the variable by −k). The additional factor 2j/2

is a normalisation factor and guarantees that

‖φj,k‖2
L2(R) =

∫

R

∣∣2j/2 φ(2jx− k)
∣∣2 dx = 2j

∫

R

|φ(2jx− k)|2 dx =

∫

R

|φ(y)|2 dy = ‖φ‖2
L2(R) = 1,

(5.0.1)

where we have used the substitution y = 2jx− k, dy/ dx = 2j.

For a suitable choice of φ, it can be achieved that for each j the shifted functions {φj,k : k ∈ Z}
form an L2(R)-orthonormal set. The scaling function φ introduced later-on will have this

property. A scaling function corresponds to an orthogonal wavelet ψ, and, for the orthogonal

wavelet ψ, the set {
ψj,k(x) := 2j/2 ψ(2jx− k) : j, k ∈ Z

}

will form an L2(R)-orthonormal basis for L2(R).

Application to the approximation of functions: Since the set of scaled and shifted func-

tions M =
{
ψj,k(x) := 2j/2 ψ(2jx− k) : j, k ∈ Z

}
forms an L2(R)-orthonormal basis of L2(R),

every function f in L2(R) has a unique representation of the form

f =

∞∑

j=−∞

∞∑

k=−∞

cj,k ψj,k,

where the coefficients are given by cj,k = 〈f, ψj,k〉L2(R). For the purposes of computing an

approximation of f , we can ignore coefficients cj,k that are smaller than a certain threshold.

Localisation: We note here that the scaling function and the wavelet (and also their shifted

and scaled copies) have to localise, since they are in L2(R). (By saying that a function f

localises, we mean that the ‘majority’ of the area under the graph of f is concentrated on some

finite interval [a, b] and that the area under the graph of f on R \ [a, b] is very small and hence

‘almost negligible’. An example of a function with this property is the Gaussian distribution

f(x) = e−x2/2.) The localisation plays a crucial role in wavelet analysis. If the area under the

graph of φ is concentrated on the interval [a, b], then the area under the graph of the shifted

copy φ(x− k) is concentrated on [a+ k, b+ k], whereas the area under the graph of the scaled

copy φ(2jx) is concentrated on [2−ja, 2−jb]. Thus shifting ‘shifts the area of localisation’ and

scaling ‘scales the area of localisation’.

Actually this chapter gives only a glimpse into some ideas of the fascinating topic of wavelets,

and we will explore the ideas mentioned above for the Haar wavelet. While this shows the

main ideas of wavelets analysis for the simplest example of an orthogonal wavelet, much of the

complicated mathematics behind the construction of wavelets remains hidden. A key idea to

constructing wavelets is to use the continuous Fourier transform (not discussed in this course)

f̂(ω) =
1√
2π

∫

R

f(x) e−iωx dx, f ∈ L1(R),

which can be extended to a bijection of L2(R). By alternately working with the functions

themselves or their Fourier transforms, wavelets and scaling functions can be constructed by

specifying their Fourier transforms with certain properties. However, this goes beyond the

scope of this course and would need to be discussed in a course focussing solely on wavelets.
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5.1 Introduction to Orthogonal Wavelets

Now we give the formal definition of an (orthogonal) wavelet.

Definition 5.1 ((orthogonal) wavelet)

A function ψ ∈ L2(R) is called an (orthogonal) wavelet if the family of functions

{ψj,k : j, k ∈ Z}, defined by

ψj,k(x) = 2j/2 ψ(2jx− k), j, k ∈ Z, (5.1.1)

is an L2(R)-orthonormal basis of L2(R).

Let us consider an example.

Example 5.2 (Haar wavelet)

Let ψ be the Haar wavelet, defined by

ψ(x) = φ(2x) − φ(2x− 1), where φ(x) = χ[0,1)(x).

Here χ[0,1) is the characteristic function of the interval [0, 1), defined by χ[0,1)(x) := 1 if x ∈ [0, 1)

and χ[0,1)(x) := 0 if x ∈ R \ [0, 1). More precisely, the Haar wavelet is given by

ψ(x) =





1 if x ∈
[
0, 1

2

)
,

−1 if x ∈
[

1
2
, 1
)
,

0 if x ∈ R \ [0, 1).

We note that ∫

R

ψ(x) dx =

∫ 1/2

0

1 dx+

∫ 1

1/2

(−1) dx =
1

2
− 1

2
= 0.

The function φ(x) = χ[0,1)(x) is also referred to as the Haar scaling function, and we will

come back to the Haar scaling function later. 2

We note that the Haar wavelet and the Haar scaling function in the previous example are

localised in the sense that they have zero values outside the interval [0, 1). In mathematical

terminology they have compact support [0, 1].

Definition 5.3 (support of a function)

Let f : R → C be a complex-valued function on R. The support supp (f) of the function

f is defined as the closure (in R with the absolute value norm | · |) of the set of those points

where f has non-zero values, that is,

supp (f) :=
{
x ∈ D : f(x) 6= 0

}
.

If the closed set supp (f) is bounded, then it is compact, and we say that f has compact

support.
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Example 5.4 (support of functions)

(a) The Haar scaling function φ(x) = χ[0,1)(x) and the Haar wavelet ψ(x) = φ(2x) − φ(2x− 1)

have both the compact support

supp (φ) = supp (ψ) = [0, 1].

(b) The function f(x) = sin x has the support supp (f) = R. This function does not have

compact support. 2

Exercise 62 Find the support of the following functions. Which of these functions do have

compact support? Explain your results.

(a) f(x) = cos(x), (b) g(x) = χ(−10,−7](x)−χ[1,2)(x)+χ(3,4)(x), (c) h(x) =

{
0 if x ≤ 0,

x3 if x > 0.

Now we come back to the Haar wavelet.

Example 5.5 (Haar wavelet is an (orthogonal) wavelet)

Let ψ be the Haar wavelet, defined by ψ(x) = φ(2x) − φ(2 x − 1), where φ(x) = χ[0,1)(x).

Then
{
ψj,k(x) := 2j/2 ψ(2jx− k) : j, k ∈ Z

}
forms an L2(R)-orthonormal basis for L2(R).

For the moment we will only prove that
{
ψj,k(x) := 2j/2 ψ(2jx − k) : j, k ∈ Z

}
forms an

L2(R)-orthonormal set. The completeness of this L2(R)-orthonormal set (that is, the fact that

this L2(R)-orthonormal set is an orthonormal basis for L2(R)) will be shown later-on.

Proof that {ψj,k(x) := 2j/2 ψ(2jx − k) : j, k ∈ Z} forms an L2(R)-orthonormal set in L2(R):

Since |ψ(x)| = 1 for all x ∈ [0, 1) and |ψ(x)| = 0 elsewhere, we clearly have

‖ψ‖L2(R) =

(∫

R

|ψ(x)|2 dx

)1/2

=

(∫ 1

0

1 dx

)1/2

=
√

[x]10 = 1.

From the general properties of the scaled and shifted copies ψj,k (see (5.0.1)) we have

‖ψj,k‖L2(R) = 1 for all j ∈ Z and all k ∈ Z,

so that the family {ψj,k(x) := 2j/2 ψ(2jx− k) : j, k ∈ Z} is normalised. Orthogonality can be

proved as follows. We have to show that

〈ψj,k, ψj′,k′〉L2(R) = δj,j′ δk,k′ =

{
1 if j = j′ and k = k′,

0 else.

First of all, note that (since supp (φ) = supp (χ[0,1)) = [0, 1]) the support of ψj,k is given by

supp (ψj,k) =
[
2−jk, 2−j(k + 1)

]
.

Hence, if j = j′ but k 6= k′ then the functions ψj,k and ψj′,k′ have essentially (that is, apart

from boundary points) disjoint support. Thus if j = j′ but k 6= k′ then ψj,k(x)ψj′,k′(x) = 0 for

all x ∈ R, and hence

〈ψj,k, ψj′,k′〉L2(R) =

∫

R

ψj,k(x)ψj′,k′(x) dx =

∫

R

0 dx = 0.
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Finally, if j 6= j′, we may assume without loss of generality that for j′ < j. Then there are two

possibilities: Either ψj,k and ψj′,k′ have again essentially disjoint support (apart from possibly

boundary points) in which case the inner product is zero. Or alternatively the support of ψj,k is

contained in an interval where ψj′,k′ does not change sign, that is, ψj,k(x)ψj′,k′(x) = 2j′/2 ψj,k(x)

for all x ∈ R or ψj,k(x)ψj′,k′(x) = −2j′/2 ψj,k(x) for all x ∈ R. We have

∫

R

ψj,k(x) dx = 2j/2

∫

R

ψ(2jx− k) dx = 2−j/2

∫

R

ψ(y) dy = 2−j/2

(∫ 1/2

0

1 dy −
∫ 1

1/2

1 dy

)
= 0,

where we have used the substitution y = 2jx − k, dy/ dx = 2j . This implies that also

〈ψj,k, ψj′,k′〉L2(R) = 0 if j 6= j′ and if ψj,k and ψj′,k′ do not have disjoint support. 2

If we represent a function f ∈ L2(R) as a series with respect to the L2(R)-orthonormal basis

{ψj,k(x) = 2j/2 φ(2jx− k) : j, k ∈ Z} generated by the Haar wavelet ψ, then we have

f(x) =
∑

j∈Z

∑

k∈Z

〈f, ψj,k〉L2(R) ψj,k(x) =
∑

j∈Z

∑

k∈Z

〈f, ψj,k〉L2(R) 2j/2 ψ(2jx− k). (5.1.2)

If we fix the index j and only consider the inner sum, then we have an infinite sum of shifted

copies of the function

ψj,0(x) = 2j/2 ψ(2jx) =





2j/2 if x ∈
[
0, 2−(j+1)

)
,

−2j/2 if x ∈
[
2−(j+1), 2−j

)
,

0 if x ∈ R \ [0, 2−j) .

Clearly supp (ψj,0) = [0, 2−j]. We see that the compact support of

ψj,k(x) = 2j/2 ψ(2jx− k) = 2j/2 ψ
(
2j(x− 2−jk)

)

(which is just the function ψj,0 shifted by 2−jk) is just supp (ψj,k) = [2−jk, 2−j (k+1)]. However,

if we change j, then the support of the ψj,k becomes narrower as j increases and becomes wider

as j decreases. Thus intuitively, the contributions in (5.1.2) for small j are used to model long

wavelength (low frequency) features of the signal f and the contributions in (5.1.2) for

large j are used to model short wavelength (high frequency) features of the signal f .

5.2 Multiresolution Analysis for the Haar Wavelet

In this section we will introduce the concept of a multiresolution analysis. First we will

encounter all definitions and results for the special case of the Haar wavelet and the Haar

scaling function. In Section 5.3 we will then define the concept of a multiresolution analysis as

an abstract concept and derive some conclusions.

Starting with the Haar scaling function φ(x) = χ[0,1)(x) and its shifted and scaled versions

φj,k(x) = 2j/2 φ(2jx− k), j, k ∈ Z, (5.2.1)
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we define the following closed subspaces of L2(R).

Definition 5.6 (scale spaces Vj for the Haar scaling function)

Let φ(x) = χ[0,1)(x) be the Haar scaling function. Let
{
φj,k(x) = 2j/2 φ(2jx− k) : j, k ∈ Z

}

denote the family of its scaled and shifted versions. For each j ∈ Z, the scale space Vj is

defined by

Vj := span
{
φj,k(x) = 2j/2 φ(2jx− k) : k ∈ Z

} ‖·‖L2(R)

,

where the closure is taken with respect to the L2(R) norm ‖ · ‖L2(R).

We note that the elements of Vj consist of step functions which are piecewise constant on the

intervals [2−jk, 2−j(k + 1)].

The term scale space refers to the fact that the functions in Vj are in the closure of the span

of shifted copies of the scaled version φj,0(x) = 2j/2 φ(2jx) of the scaling function φ.

Since
{
φj,k(x) = 2j/2 φ(2jx − k) : k ∈ Z

}
is an L2(R)-orthonormal set, by the construction of

the scale space Vj , the set {φj,k(x) = 2j/2 φ(2jx − k) : k ∈ Z} forms an L2(R)-orthonormal

basis for Vj . We state this as a lemma, since it will play a crucial role in our discussion of the

Haar wavelet and the Haar scaling function.

Lemma 5.7 ({φj,k} is an L2(R)-orthonormal basis for Vj)

Let φ(x) = χ[0,1)(x) be the Haar scaling function. The set {φj,k(x) = 2j/2 φ(2jx−k) : k ∈ Z}
forms an L2(R)-orthonormal basis for Vj. Thus for every f ∈ Vj there exists a sequence

of coefficients
(
c
(j)
k (f)

)
k∈Z

in ℓ2(Z), given by

c
(j)
k (f) := 〈f, φj,k〉L2(R) =

∫

R

f(x)φj,k(x) dx, (5.2.2)

such that

f =
∑

k∈Z

c
(j)
k (f)φj,k, (5.2.3)

where the series in (5.2.3) converges with respect to ‖·‖L2(R)and where the equality in (5.2.3)

holds in the L2(R) sense.

Here the linear sequence space ℓ2(Z) is defined in analogy to ℓ2(N): The linear space ℓ2(Z)

is the set of all sequences c = (ck)k∈Z in C for which

‖c‖2 = ‖(ck)k∈Z‖2 :=

(∑

k∈Z

|ck|2
)1/2

(5.2.4)

is finite. The linear space ℓ2(Z) is a Hilbert space with the inner product

〈c, d〉2 =
∑

k∈Z

ck dk, c = (ck)k∈Z, d = (dk)k∈Z,

which also induces the norm (5.2.4).
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We note that the formula (5.2.2) for the coefficients, the expansion (5.2.3) and the fact that(
c
(j)
k (f)

)
k∈Z

∈ ℓ2(Z) directly follow from our general knowledge about Hilbert spaces and or-

thonormal bases (see Theorem 3.62 in Chapter 3).

The next theorem investigates the properties of the scale spaces of the Haar scaling function.

Theorem 5.8 (properties of the scale spaces for the Haar scaling function)

Let φ(x) = χ[0,1)(x) be the Haar scaling function, and let Vj, j ∈ Z, be the scale spaces of the

Haar scaling function as in introduced in Definition 5.6. These scale spaces Vj are closed

subspaces of L2(R) with the following properties:

(i) Vj ⊂ Vj+1 for any j ∈ Z.

(ii) For any j ∈ Z, we have f ∈ Vj if and only if f(2·) ∈ Vj+1.

(iii)
⋃
j∈Z

Vj

‖·‖L2(R)
= L2(R).

(iv)
⋂
j∈Z

Vj = {0}.

(v) {φ(x− k) : k ∈ Z} is an L2(R)-orthonormal basis for V0.

As the properties (i) to (v) are satisfied for the family {Vj}j∈Z of scale spaces Vj of the Haar

scaling function, we say that the family {Vj}j∈Z forms a multiresolution analysis.

We will get a general definition of the term ‘multiresolution analysis’ in the next section.

Essentially it is a collection {Vj}j∈Z of subspaces of L2(R) such that properties (i) to (v) in

Theorem 5.8 are satisfied, where (v) is modified to say that there exists a function φ ∈ L2(R)

such that (v) holds.

Proof of Theorem 5.8: We verify the five properties:

(i) Since

χ[0,1)(x) = χ[0,1/2)(x) + χ[1/2,1)(x) = χ[0,1)(2x) + χ[0,1)(2x− 1), (5.2.5)

we have

φj,k(x) = 2j/2 χ[0,1)(2
jx− k)

= 2j/2
[
χ[0,1)

(
2 (2jx− k)

)
+ χ[0,1)

(
2 (2jx− k) − 1

)]

=
2(j+1)/2

21/2

[
χ[0,1)

(
2j+1x− 2k

)
+ χ[0,1)

(
2j+1x− (2k + 1)

)]

=
1√
2

[
φj+1,2k(x) − φj+1,2k+1(x)

]
,

which proves that for every k ∈ Z, the function φj,k is in span {φj+1,k : k ∈ Z}. Hence any

function f in span {φj,k : k ∈ Z} is also in span {φj+1,k : k ∈ Z}. From

span {φj,k : k ∈ Z} ⊂ span {φj+1,k : k ∈ Z}
we can conclude immediately

Vj = span {φj,k : k ∈ Z} ‖·‖L2(R) ⊂ span {φj+1,k : k ∈ Z} ‖·‖L2(R)
= Vj+1.
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(ii) ⇒: Assume that f ∈ Vj; then from Lemma 5.7 there exists a sequence of coefficients(
c
(j)
k (f)

)
k∈Z

∈ ℓ2(Z) such that

f(x) =
∑

k∈Z

c
(j)
k (f)φj,k(x).

Hence we have

g(x) := f(2x) =
∑

k∈Z

c
(j)
k (f)φj,k(2x)

=
∑

k∈Z

c
(j)
k (f) 2j/2 φ(2j+1x− k)

=
∑

k∈Z

c
(j)
k (f)√

2
φj+1,k(x).

Since
(
c
(j)
k (f)

)
k∈Z

∈ ℓ2(Z), the sequence
(
(
√

2)−1 c
(j)
k (f)

)
k∈Z

is also in ℓ2(Z), and we know from

the Riesz-Fischer theorem (see Theorem 3.63) that g(x) = f(2x) is in Vj+1.

⇐: Assume that g(x) = f(2x) is in Vj+1. Then there exists a sequence of coefficients(
c
(j+1)
k (g)

)
k∈Z

in ℓ2(Z) such that

f(2x) = g(x) =
∑

k∈Z

c
(j+1)
k (g)φj+1,k(x)

=
∑

k∈Z

c
(j+1)
k (g) 2(j+1)/2 φ(2j+1x− k)

=
∑

k∈Z

√
2 c

(j+1)
k (g)φj,k(2x).

Since
(
c
(j+1)
k (g)

)
k∈Z

∈ ℓ2(Z), the sequence
(√

2 c
(j+1)
k (g)

)
k∈Z

is also in ℓ2(Z), and the Riesz-

Fischer theorem (see Theorem 3.63) tells us that

f(x) =
∑

k∈Z

√
2 c

(j+1)
k (g)φj,k(x)

is in Vj .

(iii) The third property follows from the fact that every function in L2(R) can be approximated

arbitrarily well by step functions (that is, piecewise constant functions). In other words the step

functions are dense in L2(R) with respect to the L2(R) norm. This is a non-trivial result that

is derived during the introduction of the Lebesgue integral. – As the supports of the φj,k get

arbitrary small as j → ∞ and cover for each fixed j all of R, we can use span {φj,k : j, k ∈ Z}
to approximate any characteristic function χ[a,b) arbitrarily well, that is, span {φj,k : j, k ∈ Z}
is dense in the set of all step functions with respect to the norm ‖ · ‖L2(R). Since the set of

all step functions is dense in L2(R), we see that span {φj,k : j, k ∈ Z} is dense in L2(R) with

respect to the norm ‖ · ‖L2(R). This together with the imbedding Vj ⊂ Vj+1 implies that (iii)

holds true.
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(iv) For the fourth property note that a function f that belongs to Vj is constant one each of

the intervals [0, 2−j) and [−2−j , 0). Letting j → −∞ shows that f ∈ ⋂j∈Z
Vj satisfies f(x) = c1

for x < 0 and f(x) = c2 for x ≥ 0 with some constants c1, c2 ∈ C. As f ∈ L2(R), that is,

‖f‖L2(R) =

(∫

R

|f(x)|2 dx

)1/2

=

(∫ 0

−∞

|c1|2 dx+

∫ ∞

0

|c2|2 dx

)1/2

<∞,

we have to have c1 = c2 = 0, that is, f is the zero function.

(v) The fifth property is a special case of Lemma 5.7. for j = 0.

This verifies the theorem. 2

Later on, we will define a multiresolution analysis as a set of function spaces, which satisfy

the properties in Theorem 5.8. But for now, we want to take a look at what we can conclude

from some of the properties in Theorem 5.8.

First of all, we have V0 ⊂ V1, which means in particular that φ can be expressed as a linear

combination of functions φ1,k(x) =
√

2φ(2x − k), k ∈ Z. For the Haar scaling function, it is

easy to see that we have (see also (5.2.5))

φ(x) = φ(2x) + φ(2x− 1) =
1√
2

(
21/2 φ(2x) − 21/2 φ(2x− 1)

)
=

1√
2

(
φ1,0(x) − φ1,1(x)

)
.

Such an equation is called a refinement equation.

Lemma 5.9 (refinement equation of the Haar scaling function)

The Haar scaling function φ(x) = χ[0,1)(x) satisfies the refinement equation

φ(x) = φ(2x) + φ(2x− 1) =
1√
2

(
φ1,0(x) − φ1,1(x)

)
. (5.2.6)

From (5.2.6) it follows that

φj,k(x) = 2j/2 φ(2jx− k)

= 2j/2
[
φ(2j+1x− 2k) + φ(2j+1x− 2k − 1)

]

=
1√
2

[
φj+1,2k(x) + φj+1,2k+1(x)

]
.

From V0 ⊂ V1 (see Theorem 5.8 (i)) and the fact that both spaces are closed subspaces of

L2(R), it follows that V1 can be decomposed into V0 and its orthogonal complement in V1,

usually denoted by W0, such that we have the orthogonal sum V1 = V0 ⊕W0. This, of course

holds in the more general situation of Vj ⊂ Vj+1: we define the detail space Wj as the

orthogonal complement of Vj in Vj+1, that is, we have the orthogonal sum

Vj+1 = Vj ⊕Wj.
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Definition 5.10 (detail spaces of the Haar scaling function)

Let φ(x) = χ[0,1)(x) be the Haar scaling function, and let Vj, j ∈ Z, be the scale spaces of

the Haar scaling function, defined in Definition 5.6. The detail space Wj, j ∈ Z, of the

Haar scaling function is defined as the L2(R)-orthogonal complement of Vj in Vj+1,

such that, we have the orthogonal sum

Vj+1 = Vj ⊕Wj, j ∈ Z.

Interestingly, like the scale spaces Vj, the detail spaces Wj are generated by the shifts and scales

of only one function, namely the Haar wavelet ψ(x) = φ(2x) − φ(2x− 1).

Lemma 5.11 (L2(R)-orthonormal bases for Vj and Wj)

Let φ(x) = χ[0,1)(x) be the Haar scaling function and ψ(x) = φ(2x)− φ(2x− 1) be the Haar

wavelet. Then the following holds true:

(i) The set {ψj,k(x) = 2j/2 ψ(2jx− k) : k ∈ Z} forms an L2(R)-orthonormal basis for

the detail space Wj.

(ii) The set {ψj,k(x) = 2j/2 ψ(2jx − k), φj,k(x) = 2j/2 φ(2jx − k) : k ∈ Z} forms an

L2(R)-orthonormal basis for the scale space Vj+1.

Proof of Lemma 5.11: Since the spaces Vj are defined by scaling, it actually suffices to prove

this result only for j = 0.

By the definition ψ(x) = φ(2x)− φ(2x− 1) of the Haar wavelet ψ, the shifts ψ0,k of ψ have the

representation

ψ0,k(x) = ψ(x− k) = φ
(
2(x− k)

)
− φ

(
2(x− k) − 1

)
=

1√
2

[
φ1,2k(x) − φ1,2k+1(x)

]
,

and hence the ψ0,k belong to V1 but not to V0. Furthermore, they satisfy

〈φ0,k, ψ0,m〉L2(R) =
〈
φ(· − k), ψ(· −m)

〉
L2(R)

=

∫

R

φ(x− k)ψ(x−m) dx = δk,m,

because we have φ(x−k)ψ(x−m) = 0 for all x ∈ R if k 6= m and φ(x−k)ψ(x−m) = ψ(x−k)
for all x ∈ R if k = m and

∫

R

ψ(x− k) dx =

∫

R

ψ(x) dx = 0.

Thus we see that the ψ0,k, k ∈ Z are orthogonal to V0, and hence they belong to W0. That the

ψ0,k, k ∈ Z, form an L2(R)-orthonormal set was verified in Example 5.5. Thus we have verified

so far that the {ψ0,k : k ∈ Z} form an L2(R)-orthonormal set in W0. To verify (i) it remains to

show that this L2(R)-orthonormal set is also an L2(R)-orthonormal basis for W0, that is, that

every f ∈W0 has a (unique) representation

f =
∑

k∈Z

〈f, ψ0,k〉L2(R) ψ0,k.
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From the previous considerations and the fact that {φ0,k : k ∈ Z} is an L2(R)-orthonormal

basis for V0, we also see that the set {φ0,k, ψ0,k : k ∈ Z} forms an L2(R)-orthonormal set in

V1. To verify (ii) it remains to show that this L2(R)-orthonormal set is an L2(R)-orthonormal

basis for V1, that is, that every f in V1 has a (unique) representation

f =
∑

k∈Z

〈f, φ0,k〉L2(R) φ0,k +
∑

k∈Z

〈f, ψ0,k〉L2(R) ψ0,k.

To complete the proofs of (i) and (ii) we make use of the identities

φ(x) + ψ(x) = 2φ(2x), (5.2.7)

φ(x) − ψ(x) = 2φ(2x− 1), (5.2.8)

whose easy proof is left as an exercise. By replacing in (5.2.7) and (5.2.8) x by x − k, we

conclude that

φ1,2k =
1√
2

(
φ0,k + ψ0,k

)
, (5.2.9)

φ1,2k+1 =
1√
2

(
φ0,k − ψ0,k

)
. (5.2.10)

Any f ∈ V1 has an expansion

f =
∑

k∈Z

〈f, φ1,k〉L2(R)︸ ︷︷ ︸
=: c

(1)
k (f)

φ1,k =
∑

k∈Z

c
(1)
k (f)φ1,k,

and substituting (5.2.9) and (5.2.10) for φ1,k with k even and k odd, respectively, gives

f =
∑

k∈Z

c
(1)
2k (f)φ1,2k +

∑

k∈Z

c
(1)
2k+1(f)φ1,2k+1

=
∑

k∈Z

c
(1)
2k (f)√

2

(
φ0,k + ψ0,k

)
+
∑

k∈Z

c
(1)
2k+1(f)√

2

(
φ0,k − ψ0,k

)

=
∑

k∈Z

c
(1)
2k (f) + c

(1)
2k+1(f)√

2
φ0,k +

∑

k∈Z

c
(1)
2k (f) − c

(1)
2k+1(f)√

2
ψ0,k. (5.2.11)

This shows that the set {ψ0,k, φ0,k : k ∈ Z} forms an L2(R)-orthonormal basis for V1. This

proves (ii).

Finally, by definition of W0, any f ∈ W0 belongs to V1 and has therefore a representation

(5.2.11). By the definition of W0 as the L2(R)-orthogonal complement of V0 in V1, we have for

any f ∈ W0 that 〈f, φ0,m〉L2(R) = 0 for all m ∈ Z. Taking in (5.2.11) the inner product with

φ0,m shows that the first sum in the last line of (5.2.11) actually vanishes:

0 = 〈f, φ0,m〉L2(R) =
c
(1)
2m(f) + c

(1)
2m+1(f)√

2
, m ∈ Z,
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where we have used the fact that {ψ0,k, φ0,k : k ∈ Z} is an L2(R)-orthonormal set. Hence

f ∈W0 has the representation

f =
∑

k∈Z

c
(1)
2k (f) − c

(1)
2k+1(f)√

2
ψ0,k,

which shows that {ψ0,k : k ∈ Z} forms an L2(R)-orthonormal basis for W0. This proves (i). 2

Exercise 63 Proof the identities (5.2.7) and (5.2.8).

Exercise 64 In the proof of Lemma 5.11 it was claimed that it is enough to verify the prop-

erty (i) for W0 and the property (ii) for V1, and that this then would imply the stated property (i)

for any Wj and the property (ii) for Vj+1, due to the definition of the spaces Vj via scaling.

Verify that this is true.

Exercise 65 Let φ(x) = χ[0,1)(x) be the Haar scaling function, and let ψ(x) = φ(2x)−φ(2x−1)

be the Haar wavelet. Let Vj, j ∈ Z, denote the scale spaces and let Wj, j ∈ Z, denote the detail

spaces of the Haar scaling function and the Haar wavelet. Let

f(x) =





3 if x ∈
[
−1

2
, 0
)
,

1 if x ∈
[
0, 1

2

)
,

−2 if x ∈
[

1
2
, 1
)
,

−1 if x ∈ [1, 2) ,

2 if x ∈ [3, 4) ,

0 if x ∈ R \
([
−1

2
, 2
)
∪ [3, 4)

)
.

(a) Sketch the function f .

(b) Show that f ∈ V1, and find the representation of f with respect to the L2(R)-orthonormal

basis {φ1,k(x) =
√

2φ(2x− k) : k ∈ Z} of V1.

(c) Derive the representation of the function f with respect to the L2(R)-orthonormal basis

{φ0,k(x) = φ(x− k), ψ0,k(x) = ψ(x− k) : k ∈ Z} of V1.

Note that we can iterate the decomposition Vj+1 = Vj ⊕Wj of Vj+1 into a direct sum. More

precisely,

Vj+1 = Wj ⊕ Vj = Wj ⊕Wj−1 ⊕ Vj−1 = . . . =
⊕

ℓ≤j

Wℓ

‖·‖L2(R)

.

Noting that Vj ⊂ Vj+1 and using Theorem 5.8 (iii), letting j tend to infinity shows that

L2(R) =
⊕

j∈Z

Wj

‖·‖L2(R)

.

Analogously we can obtain all the other relations summarised in the lemma below.
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Lemma 5.12 (orthogonal sums of Haar scale spaces and Haar detail spaces)

Let φ(x) = χ[0,1)(x) be the Haar scaling function, and let ψ(x) = φ(2x) − φ(2x − 1) be

the Haar wavelet. Let Vj and Wj, j ∈ Z, be the corresponding scale and detail spaces, as

introduced in Definitions 5.6 and 5.10. Then the following orthogonal sum relations hold

true:

(i) VJ+1 = VJ0 ⊕WJ0 ⊕WJ0+1⊕· · ·⊕WJ = VJ0 ⊕
(

J⊕
j=J0

Wj

)
for all −∞ < J0 ≤ J <∞.

(ii) VJ+1 =
J⊕

ℓ=−∞

Wℓ

‖·‖L2(R)

for all J ∈ Z.

(iii) L2(R) =
⊕
j∈Z

Wj
‖·‖L2(R)

.

From Lemma 5.12 (iii) we can finally conclude that {ψj,k(x) = 2j/2 ψ(2jx− k) : j, k ∈ Z} is an

L2(R)-orthonormal basis for L2(R).

Corollary 5.13 (Haar wavelet is an orthogonal wavelet)

Let φ(x) = χ[0,1)(x) be the Haar scaling function, and let ψ(x) = φ(2x) − φ(2x − 1) be the

Haar wavelet. The set

M :=
{
ψj,k(x) = 2j/2 ψ(2jx− k) : j, k ∈ Z

}

forms an L2(R)-orthonormal basis of L2(R). Hence the Haar wavelet ψ is an orthog-

onal wavelet.

Proof of Corollary 5.13: In Example 5.5 we have verified that M is an L2(R)-orthonormal

set. From Lemma 5.11 (i) we know that

{
ψj,k(x) = 2j/2 ψ(2jx− k) : k ∈ Z

}

is an L2(R)-orthonormal basis for Wj . From the fact that Vj+1 is the orthogonal sum Vj+1 =

Vj ⊕Wj and from Lemma 5.11 (ii) we can conclude that M is an L2(R)-orthonormal set. This,

together with Lemma 5.12 (iii), implies that

M
‖·‖L2(R) =

{
ψj,k(x) = 2j/2 ψ(2jx− k) : j, k ∈ Z

} ‖·‖L2(R)

= L2(R).

Hence M is an L2(R)-orthonormal basis for L2(R). 2

Lemma 5.12 (i) describes the orthogonal decomposition of a function into a basic approximation

in VJ0 plus a sum of approximations in the spaces Wj , j = J0, J0 + 1, . . . , J . More precisely, for

f ∈ VJ+1, we have

f =
∑

k∈Z

c
(J0)
k (f)φJ0,k

︸ ︷︷ ︸
=: PJ0(f)

+
J∑

j=J0

∑

k∈Z

d
(j)
k (f)ψj,k

︸ ︷︷ ︸
=: Qj(f)

, (5.2.12)
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where the coefficients are given by

c
(j)
k (f) = 〈f, φj,k〉L2(R) =

∫

R

f(x)φj,k(x) dx, (5.2.13)

d
(j)
k (f) = 〈f, ψj,k〉L2(R) =

∫

R

f(x)ψj,k(x) dx. (5.2.14)

The formula (5.2.12) is at the heart of the wavelet transform that is discussed in Section 5.4.

The intuition for understanding formula (5.2.12) is as follows. The approximation PJ0(f) of f

in VJ0 is a coarse approximation that captures the global trends of the signal f . We note

that PJ0(f) is the L2(R)-orthogonal projection of f onto the scale space VJ0 (and also the best

approximation of f in VJ0). As PJ0(f) is a ‘coarse’ approximation of f corresponding to long

wavelength (low frequency) contributions of f , we can consider the orthogonal projection PJ0

as a low-pass filter.

Each approximation Qj(f), j = J0, . . . , J , describes details of the signal f , which are added

to the original approximation. From the definition of the scaled versions of the Haar wavelet,

it is intuitively clear that, the larger j, the finer the details that can be approximated by

Qj(f). We note that Qj(f) is the L2(R)-orthogonal projection of f onto the detail space Wj

(and also the best approximation of f in Wj). In the language of signal processing we may

interpret the operators Qj , j = J0, J0 + 1, . . . , J , as band-pass filters, which means that

each Qjf approximates details in the signal f corresponding to a certain band of wavelengths

(frequencies). The higher the index j the shorter the wavelengths (the higher the frequencies)

in the signal that are approximated by Qjf .

5.3 Multiresolution Analysis

Finally, we give the general definition of a multiresolution analysis (see Theorem 5.8 for the

special case of the multiresolution analysis generated by the Haar scaling function).

Definition 5.14 (multiresolution analysis)

A family {Vj}j∈Z of closed subspaces Vj of L2(R) is called a multiresolution analysis

(MRA) if the following properties are satisfied:

(i) Vj ⊂ Vj+1 for all j ∈ Z.

(ii) For any j ∈ Z, we have f ∈ Vj if and only if f(2·) ∈ Vj+1.

(iii)
⋃
j∈Z

Vj

L2(R)
= L2(R).

(iv)
⋂
j∈Z

Vj = {0}.

(v) There exists a function φ ∈ L2(R) such that {φ(· − k) : k ∈ Z} is an orthonormal

basis for V0 equipped with the L2(R) inner product.

The function φ in property (v) is called a scaling function of the multiresolution analysis.
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Comparison with Theorem 5.8 shows that the scale spaces {Vj}j∈Z of the the Haar scaling

function form a multiresolution analysis in the sense of Definition 5.14 and that the Haar

scaling function is the scaling function in property (v) of Definition 5.14.

We also note that Definition 5.14 does not specify that the scaling function is unique; indeed

one multiresolution analysis, can have several possible scaling functions.

Let us extract a number of useful consequences from this definition.

Corollary 5.15 (derived properties of a multiresolution analysis)

Let a family {Vj}j∈Z of closed subspaces Vj of L2(R) be a multiresolution analysis. Then the

following holds true:

(i) For any j ∈ Z, a function f belongs to Vj if and only if f(2−j·) belongs to V0.

(ii) For any j ∈ Z, the set {φj,k : k ∈ Z} of functions φj,k(x) := 2j/2 φ(2jx− k) forms an

L2(R)-orthonormal basis for Vj.

(iii) The scaling function itself is not uniquely determined.

Notation: From Corollary 5.15 (ii) it is clear that, given a scaling function φ for a multireso-

lution analysis {Vj}j∈Z, the spaces Vj of the multiresolution analysis can be described via

Vj = span
{
φj,k(x) := 2j/2 φ(2jx− k) : k ∈ Z

} ‖·‖L2(R)

.

Therefore we will say that the scaling function φ generates the multiresolution analysis

{Vj}j∈Z. We will also refer to the spaces Vj as scale spaces.

Exercise 66 Prove Corollary 5.15 (i) and (ii).

As in the case of the Haar wavelet, we can decompose the closed space Vj+1 into Vj+1 = Vj⊕Wj ,

where Wj is the orthogonal complement of Vj in Vj+1.

Definition 5.16 (detail spaces)

Let a family {Vj}j∈Z of closed subspaces Vj of L2(R) be a multiresolution analysis. The

detail space Wj is defined as the L2(R)-orthogonal complement of Vj in Vj+1, that

is, we have the orthogonal sum

Vj+1 = Vj ⊕Wj.

Definition 5.16 immediately implies the the following lemma.
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Lemma 5.17 (orthogonal sum decomposition of VJ and L2(R))

Let a family {Vj}j∈Z of closed subspaces Vj of L2(R) be a multiresolution analysis, and

let {Wj}j∈Z denote the corresponding family of detail spaces. Then we have the following

orthogonal sum relations:

(i) VJ+1 = VJ0 ⊕WJ0 ⊕WJ0+1 ⊕ . . .⊕WJ = VJ0 ⊕
(

J⊕

j=J0

Wj

)
for all −∞ < J0 ≤ J <

∞.

(ii) VJ+1 =
J⊕

j=−∞

Wj

‖·‖L2(R)

for all J ∈ Z.

(iii) L2(R) =
⊕

j∈Z

Wj

‖·‖L2(R)

.

Wavelet Decomposition/Reconstruction and Multiresolution Analysis: A multires-

olution analysis {Vj}j∈Z already gives us a wavelet analysis; even though we have not yet

introduced a wavelet ψ whose scaled and shifted versions should provide L2(R)-orthonormal

bases for the detail spaces Wj. To get a wavelet decomposition of f ∈ L2(R), we introduce the

L2(R)-orthogonal projection Pj : L2(R) → Vj onto the subspace Vj. Then the L2(R)-

orthogonal projection Qj : L2(R) → Wj onto Wj is given by Qj := Pj+1 − Pj. (This

follows from the orthogonal sum Vj+1 = Vj ⊕ Wj .) Hence, we have a decomposition of the

L2(R)-orthogonal projection operator Pj+1 as Pj+1 = Pj + Qj , and more generally (using this

repeatedly)

PJ+1 = PJ0 +
J∑

j=J0

Qj . (5.3.1)

Thus the L2(R)-orthogonal projection PJ+1(f) of f ∈ L2(R) onto VJ+1 can be decomposed/reconstructed

as follows

PJ+1(f) = PJ0(f) +
J∑

j=J0

Qj(f). (5.3.2)

As in the case of the Haar scaling function and wavelet, we interpret PJ0f as a basic/coarse

(low-frequency) approximation of the signal f and interpret the approximations Qjf as

(band-pass filtered) details that contain more and more information on the finer details of

the signal f as j increases. Both (5.3.1) and (5.3.2) can be seen as a formal way of writing

down the wavelet decomposition.

The preceding definitions and statements raise several questions: How do we find a multires-

olution analysis, or, maybe more practically minded, how do we find a scaling function φ that

generates a multiresolution analysis {Vj}j∈Z via

Vj := span
{
φj,k(x) = 2j/2φ(2jx− k) : k ∈ Z

} ‖·‖L2(R)

, j ∈ Z,

and where {φj,k(x) = 2j/2 φ(2jx− k) : k ∈ Z} is an L2(R)-orthonormal basis of Vj? Also, once
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we have a scaling function, how do we find a wavelet ψ such that

{
ψj,k(x) = 2j/2 ψ(2jx− k) : k ∈ Z

}

forms an L2(R)-orthonormal basis of the detail space Wj? Answering these questions is a highly

non-trivial task that goes beyond the scope of this course and involves the (continuous) Fourier

transform. The full analysis of the answers to these questions would need to be discussed in a

follow-up course that solely focusses on wavelets.

To round up our discussion, we will collect a few properties of a scaling function of a multireso-

lution analysis. Then we will generalise and give conditions on a function φ ∈ L2(R) such that

the spaces

Vj := span
{
φj,k(x) = 2j/2 φ(2jx− k) : k ∈ Z

} ‖·‖L2(R)

, j ∈ Z,

and the function φ satisfy conditions (i), (ii) and (v) in Definition 5.14. To derive conditions

on φ that guarantee that also conditions (iii) and (iv) in Definition 5.14 are satisfied requires

mathematical analysis that goes beyond the scope of this course.

Theorem 5.18 (refinement equation for the scaling function)

A scaling function φ of a multiresolution analysis {Vj}j∈Z satisfies a refinement equation

(or two-scale relation)

φ(x) =
√

2
∑

k∈Z

hk φ(2x− k) (5.3.3)

with a sequence of coefficients (hk)k∈Z ∈ ℓ2(Z) (which depend on φ).

The refinement equation says that the scaling function φ ∈ V0 can be expressed as a L2(R)-

convergent expansion in terms of the basis functions φ1,k =
√

2φ(2x− k), k ∈ Z, of V1.

Let us first consider our example of the Haar scaling function again:

Example 5.19 (refinement equation of the Haar scaling function)

If φ(x) = χ[0,1)(x) is the Haar scaling function then we have (see (5.2.6) in Lemma 5.9)

φ(x) = φ(2x) + φ(2x− 1) =
√

2

(
1√
2
φ(2x) +

1√
2
φ(2x− 1)

)
,

and hence we have (5.3.3) with the sequence (hk)k∈Z ∈ ℓ2(Z) given by h0 = h1 = 1/
√

2 and

hk = 0 for all k ∈ Z \ {0, 1}.

Proof of Theorem 5.18: Since φ ∈ V0 ⊂ V1 and since

{φ1,k(x) := 21/2φ(2jx− k) : k ∈ Z}

is an L2(R)-orthonormal basis of V1, we have

φ(x) =
∑

k∈Z

hk φ1,k(x) =
√

2
∑

k∈Z

hk φ(2 x− k).
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with the coefficients hk := 〈φ, φ1,k〉L2(R), k ∈ Z. Furthermore from Parseval’s identity for V1,

‖(hk)k∈Z‖2 =

(∑

k∈Z

|hk|2
)1/2

= ‖φ‖L2(R) <∞,

and we know that (hk)k∈Z ∈ ℓ2(Z). 2

Now we want to go away from the assumption that φ is the scaling function of a multiresolution

analysis. Instead we want to establish assumptions on φ ∈ L2(R) that give us a refinement

equation and properties (i), (ii), and (v) in the definition of a multiresolution analysis for the

spaces {Vj}j∈Z, defined by

Vj := span
{
φj,k(x) = 2j/2φ(2jx− k) : k ∈ Z

} ‖·‖L2(R)

.

Theorem 5.20 (consequences of assumptions on φ ∈ L2(R))

Let φ ∈ L2(R) satisfy the condition that
{
φ0,k(x) = φ(x − k) : k ∈ Z

}
is an L2(R)-

orthonormal set. Define the spaces Vj, j ∈ Z, by

Vj := span
{
φj,k(x) = 2j/2φ(2jx− k) : k ∈ Z

} ‖·‖L2(R)

.

Then the following holds true:

(i) For any j ∈ Z, the set
{
φj,k(x) := 2j/2φ(2jx − k) : k ∈ Z

}
is an L2(R)-orthonormal

basis for Vj.

(ii) f ∈ Vj if and only if f(2·) ∈ Vj for all j ∈ Z.

(iii) The function φ is in V1 if and only if φ satisfies a refinement equation

φ(x) =
√

2
∑

k∈Z

hk φ(2x− k) (5.3.4)

with a sequence (hk)k∈Z ∈ ℓ2(Z).

(iv) If φ ∈ V1, then Vj ⊂ Vj+1 for all j ∈ Z.

Before we prove the theorem, we state the following corollary.

Corollary 5.21 (conditions on φ ∈ L2(R) for (i), (ii), (v) in Definition 5.14)

Let φ ∈ L2(R) satisfy the assumption that {φ0,k(x) = φ(x − k) : k ∈ Z} is an L2(R)-

orthonormal set, and define the spaces Vj, j ∈ Z,

Vj := span
{
φj,k(x) = 2j/2φ(2jx− k) : k ∈ Z

} ‖·‖L2(R)

.

Assume further that φ ∈ V1. Then the set {Vj}j∈Z of subspaces of L2(R) and the function φ

satisfy conditions (i), (ii), and (v) from Definition 5.14 of a multiresolution analysis.

Proof of Corollary 5.21: The corollary follows essentially from Theorem 5.20. Since the set
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{
φ0,k(x) = φ(x−k) : k ∈ Z

}
is an L2(R)-orthonormal set, it is clear, from the definition of V0,

that
{
φ0,k(x) = φ(x−k) : k ∈ Z

}
is an L2(R)-orthonormal basis of V0. Hence (v) in Definition

5.14 is satisfied. Since φ ∈ V1, we find from Theorem 5.20 (iv) that (i) in Definition 5.14 is

satisfied. That property (ii) in Definition 5.14 is satisfied follows immediately from Theorem

5.20 (ii). 2

Proof of Theorem 5.20: We verify statements (i) to (iv).

(i) With the substitution y = 2jx, dy = 2j dx, we obtain

〈
φj,k, φj,ℓ

〉
L2(R)

=

∫

R

2j φ(2jx− k)φ(2jx− ℓ) dx =

∫

R

φ(y − k)φ(y − ℓ) dy = δk,ℓ.

Hence {φj,k : k ∈ Z} is an L2(R)-orthonormal set. By the definition of Vj it is clear that this

L2(R)-orthonormal set is an L2(R)-orthonormal basis for Vj.

(ii) ⇒: Assume that f ∈ Vj. Since {φj,k : k ∈ Z} is an L2(R)-orthonormal basis for Vj, there

exists a sequence (ck)k∈Z ∈ ℓ2(Z) such that

f(x) =
∑

k∈Z

ck φj,k(x) =
∑

k∈Z

ck 2j/2 φ(2jx− k).

Thus the function g(x) := f(2x) is given by

g(x) = f(2x) =
∑

k∈Z

ck φj,k(2x) =
∑

k∈Z

ck√
2

2(j+1)/2 φ(2j+1x− k) =
∑

k∈Z

ck√
2
φj+1,k(x),

and the sequence (ck/
√

2)k∈Z is also in ℓ2(Z). As the set {φj+1,k : k ∈ Z} forms an L2(R)-

orthonormal basis of Vj+1, clearly g ∈ Vj+1.

⇐: Assume that g = f(2·) is in Vj+1. Since {φj+1,k : k ∈ Z} is an L2(R)-orthonormal basis

for Vj+1, there exists a sequence (ck)k∈Z ∈ ℓ2(Z) such that

g(x) =
∑

k∈Z

ck φj+1,k(x) =
∑

k∈Z

ck 2(j+1)/2 φ(2j+1x− k).

Substituting x = y/2, we find

f(y) = g(y/2) =
∑

k∈Z

√
2 ck 2j/2 φ(2jy − k). =

∑

k∈Z

√
2 ck φj,k(y).

As {φj,k : k ∈ Z} is an L2(R)-orthonormal basis for Vj and as (
√

2 ck)k∈Z is in ℓ2(Z) (because

(ck)k∈Z ∈ ℓ2(Z)), the function f(y) = g(y/2) is clearly in Vj .

(iii) ⇒: Assume that φ ∈ V1. Since {φ1,k : k ∈ Z} is an L2(R)-orthonormal basis for V1, there

exists a sequence (hk)k∈Z ∈ ℓ2(Z) such that

φ(x) =
∑

k∈Z

hk φ1,k(x) =
√

2
∑

k∈Z

hk φ(2x− k),

which is just the refinement equation (5.3.4).
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⇐: Conversely, assume that φ satisfies a refinement equation

φ(x) =
√

2
∑

k∈Z

hk φ(2x− k) =
∑

k∈Z

hk φ1,k(x), (5.3.5)

with some sequence (hk)k∈Z ∈ ℓ2(Z). Since {φ1,k : k ∈ Z} is an L2(R)-orthonormal basis for

V1, (5.3.5) just means that φ ∈ V1.

(iv) Let f ∈ Vj . Since {φj,k : k ∈ Z} is an L2(R)-orthonormal basis for Vj , there exists a

sequence (ck)k∈Z ∈ ℓ2(Z) such that in the L2(R)-sense

f(x) =
∑

k∈Z

ck φj,k(x) =
∑

k∈Z

ck 2j/2 φ(2jx− k). (5.3.6)

First we show that the functions φj,ℓ, ℓ ∈ Z, are in Vj+1. Indeed, since φ ∈ V1, the refinement

equation (5.3.4) holds true. Letting in the refinement equation x = 2jy− ℓ and multiplying the

equation with 2j/2 yields

2j/2 φ(2jy − ℓ) =
∑

k∈Z

hk 2(j+1)/2 φ
(
2(2jy − ℓ) − k) =

∑

k∈Z

hk 2(j+1)/2 φ
(
2j+1y − (k + 2ℓ)

)

or equivalently

φj,ℓ =
∑

k∈Z

hk φj+1,k+2ℓ. (5.3.7)

Since (hk)k∈Z is in ℓ2(Z) and since {φj+1,k : k ∈ Z} is an L2(R)-orthonormal basis for Vj+1,

(5.3.7) implies that φj,ℓ ∈ Vj+1 for all ℓ ∈ Z. As the set {φj,ℓ : ℓ ∈ Z} is an L2(R)-orthonormal

set in Vj+1, we see from (5.3.6) that the function f ∈ Vj is also in Vj+1. Since f ∈ Vj was

arbitrary, we have Vj ⊂ Vj+1.

This completes the proof. 2

5.4 The Wavelet Transform

Now we analyse the decomposition and reconstruction process described in Lemma 5.12

for the multiresolution analysis generated by the Haar scaling function and in Lemma 5.17 for

the multiresolution analysis generated by an arbitrary scaling function φ.

Assumption: For the case of a general multiresolution analysis, as defined in Definition 5.14,

we assume in this section that we have also constructed a wavelet ψ such that, for any j ∈ Z,

the set {
ψj,k(x) := 2j/2 ψ(2jx− k) : k ∈ Z

}

forms an L2(R)-orthonormal basis of the detail space Wj , and such that

{
ψj,k(x) := 2j/2 ψ(2jx− k) : j, k ∈ Z

}

forms an L2(R)-orthonormal basis for L2(R).
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You should think in this section of the Haar scaling function and the Haar wavelet, since these

are easily visualised and make the procedure more intuitive.

Suppose, we are given a function f ∈ L2(R). Then, we can fix a level J ∈ Z and consider the

L2(R)-orthogonal projection PJ(f) of f onto VJ , given by

PJ(f) =
∑

k∈Z

c
(J)
k (f)φJ,k,

where the coefficients c
(J)
k (f), k ∈ Z, are given by

c
(J)
k (f) = 〈f, φJ,k〉L2(R) =

∫

R

f(x)φJ,k(x) dx = 2J/2

∫

R

f(x)φ(2Jx− k) dx.

But instead of storing all the relevant Fourier coefficients c
(J)
k , k ∈ Z, of the approximation in

VJ , we can employ the decomposition

VJ = VJ−1 ⊕WJ−1,

(approximation in VJ) = (coarse approximation in VJ−1) ⊕ (details in WJ−1),

to store the coefficients of the approximation at the coarser level VJ−1 and the coefficients

of the details in WJ−1.

PJ(f) =
∑

k∈Z

c
(J−1)
k (f)φJ−1,k

︸ ︷︷ ︸
=: PJ−1(f)

+
∑

k∈Z

d
(J−1)
k (f)ψJ−1,k

︸ ︷︷ ︸
=: QJ−1(f)

, (5.4.1)

where the coefficients are given by

c
(J−1)
k (f) = 〈f, φJ−1,k〉L2(R) =

∫

R

f(x)φJ−1,k(x) dx,

d
(J−1)
k (f) = 〈f, ψJ−1,k〉L2(R) =

∫

R

f(x)ψJ−1,k(x) dx.

We note that PJ−1 : L2(R) → VJ−1 is the L2(R)-orthogonal projection onto VJ−1, and that

QJ−1 : L2(R) → WJ−1 is the L2(R)-orthogonal projection onto WJ−1. As the direct sum

VJ = VJ−1 ⊕WJ−1 is an orthogonal sum, we have PJ = PJ−1 + QJ−1 and QJ−1 can also be

described by QJ−1 := PJ−PJ−1. Repeating this process again and again for the approximations

Pjf in the scale spaces Vj, j = J − 1, J − 2, . . . , J0 + 1, we find

PJ(f) =
∑

k∈Z

c
(J0)
k (f)φJ0,k

︸ ︷︷ ︸
=: PJ0(f)

+

J−1∑

j=J0

∑

k∈Z

d
(j)
k (f)ψj,k

︸ ︷︷ ︸
=: Qj(f)

, (5.4.2)

where Qj : L2(R) →Wj is the L2(R)-orthogonal projection onto the detail space Wj and where

the coefficients are given by

c
(j)
k (f) = 〈f, φj,k〉L2(R) =

∫

R

f(x)φj,k(x) dx, (5.4.3)
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d
(j)
k (f) = 〈f, ψj,k〉L2(R) =

∫

R

f(x)ψj,k(x) dx. (5.4.4)

This decomposition process is indicated in Figure 5.1, where c(j) =
(
c
(j)
k (f)

)
k∈Z

denotes the

coefficient sequence of Pj(f), defined by (5.4.3) and d(j) =
(
d

(j)
k (f)

)
k∈Z

denotes the coefficient

sequence of Qj(f), defined by (5.4.4).

d(J−1) d(J−2) d(J0+1) d(J0)

ր ր ր ր ր
c(J) −→ c(J−1) −→ c(J−2) −→ · · · c(J0+2) −→ c(J0+1) −→ c(J0)

Figure 5.1: Schematic representation of the wavelet decomposition.

The decomposition scheme in Figure 5.1 is in general referred to as the wavelet decomposi-

tion. Naturally, this process can be reversed resulting in the wavelet reconstruction. Here,

we start on a very coarse level and add details to the approximation to derive a more detailed

version. This is also described by formula (5.4.2) and is schematically shown in Figure 5.2.

d(J0) d(J0+1) d(J0+2) d(J−1)

ց ց ց ց ց
c(J0) −→ c(J0+1) −→ c(J0+2) −→ c(J0+3) · · · −→ c(J−1) −→ c(J)

Figure 5.2: Schematic representation of the wavelet reconstruction.

Wavelet decomposition and wavelet reconstruction together are referred to as the wavelet

transform.

For mathematical and computational purposes, it remains to determine the relation between the

coefficient sequence
(
c
(j+1)
k (f)

)
k∈Z

of Pj+1(f) ∈ Vj+1 and the coefficient sequence
(
c
(j)
k (f)

)
k∈Z

of Pj(f) ∈ Vj and
(
d

(j)
k (f)

)
k∈Z

of Qj(f) ∈Wj . The formulas for computing
(
c
(j+1)
k (f)

)
k∈Z

from(
c
(j)
k (f)

)
k∈Z

and
(
d

(j)
k (f)

)
k∈Z

, and vice versa, naturally depend on the given scaling function

and wavelet.

We will derive the formulas for computing
(
c
(j+1)
k (f)

)
k∈Z

from
(
c
(j)
k (f)

)
k∈Z

and
(
d

(j)
k (f)

)
k∈Z

,

and vice versa, for the Haar scaling function and Haar wavelet.

To do this, recall that from Vj+1 = Vj ⊕Wj, the function Pj+1(f) ∈ Vj+1 has the following two

representations

Pj+1(f) =
∑

k∈Z

c
(j+1)
k (f)φj+1,k
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Pj+1(f) =
∑

k∈Z

c
(j)
k (f)φj,k +

∑

k∈Z

d
(j)
k (f)ψj,k.

Then, for the wavelet decomposition, we have to compute
(
c
(j)
k (f)

)
k∈Z

and
(
d

(j)
k (f)

)
k∈Z

from(
c
(j+1)
k (f)

)
k∈Z

and for the wavelet reconstruction, we have to compute
(
c
(j+1)
k (f)

)
k∈Z

from(
c
(j)
k (f)

)
k∈Z

and d
(j)
k (f)

)
k∈Z

.

Replacing in (5.2.7) and (5.2.8) x by 2jx− k yields

φ(2jx− k) + ψ(2jx− k) = 2φ(2j+1x− 2k),

φ(2jx− k) − ψ(2jx− k) = 2φ(2j+1x− 2k − 1),

or equivalently

φj+1,2k =
1√
2

(
φj,k + ψj,k

)
, (5.4.5)

φj+1,2k+1 =
1√
2

(
φj,k − ψj,k

)
. (5.4.6)

Solving in (5.4.5) and (5.4.6) for φj,k and ψj,k, respectively, yields

φj,k =
1√
2

(
φj+1,2k + φj+1,2k+1

)
, (5.4.7)

ψj,k =
1√
2

(
φj+1,2k − φj+1,2k+1

)
. (5.4.8)

From formulas (5.4.7) and (5.4.8), we obtain immediately that the formulas for the wavelet

decomposition of the coefficients are given by

c
(j)
k (f) =

1√
2

(
c
(j+1)
2k (f) + c

(j+1)
2k+1 (f)

)
, (5.4.9)

d
(j)
k (f) =

1√
2

(
c
(j+1)
2k (f) − c

(j+1)
2k+1 (f)

)
. (5.4.10)

Indeed, taking in (5.4.7) and (5.4.8) the L2(R) inner product with f yields

c
(j)
k (f) = 〈f, φj,k〉L2(R)

=
1√
2

(
〈f, φj+1,2k〉L2(R) + 〈f, φj+1,2k+1〉L2(R)

)

=
1√
2

(
c
(j+1)
2k (f) + c

(j+1)
2k+1 (f)

)
,

d
(j)
k (f) = 〈f, ψj,k〉L2(R)

=
1√
2

(
〈f, φj+1,2k〉L2(R) − 〈f, φj+1,2k+1〉L2(R)

)

=
1√
2

(
c
(j+1)
2k (f) − c

(j+1)
2k+1 (f)

)
,
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which verifies (5.4.9) and (5.4.10).

Likewise taking in (5.4.5) and (5.4.6) the L2(R) inner product with f , shows that the wavelet

reconstruction formulas for the coefficients are given by

c
(j+1)
2k (f) =

1√
2

(
c
(j)
k (f) + d

(j)
k (f)

)
, (5.4.11)

c
(j+1)
2k+1 (f) =

1√
2

(
c
(j)
k (f) − d

(j)
k (f)

)
. (5.4.12)

The formulas (5.4.11) and (5.4.12) could also have been derived by solving (5.4.9) and (5.4.10)

for c
(j+1)
2k (f) and c

(j+1)
2k+1 (f).

An example of a wavelet decomposition and wavelet reconstruction with the Haar

wavelet is shown in Figure 5.3. The first row shows on the right the original function and on

the left its approximation P5(f) in V5. The next row shows the decomposition of P5(f) in its

coarser part P4(f) ∈ V4 on the left and its details Q4(f) ∈ W4 on the right. The third row

shows the decomposition of P4(f) into its coarser part P3(f) ∈ V3 on the right and its details

Q3(f) ∈W3 on the left, and so on.

Concluding comments: Finally, we want to give some thoughts to why the concept of

wavelets is superior to the concept of the Fourier series. To explain this, we will think of the

function f ∈ L2(R) as a signal of the variable x which could be the time. If we assume that our

signal f is periodic with period 2π, then we can use the truncated Fourier series to approximate

the function f on the interval [−π, π], giving an approximation of the form

Sn(f)(x) :=
1√
2π

n∑

k=−n

f̂k e
ikx,

with the Fourier coefficients f̂k given by

f̂k =
1√
2π

∫ 2π

0

f(x) e−ikx dx.

Each of the functions eikx has support supp (eikx) = R, and therefore, for computing f̂k, in-

formation on f is needed on the whole interval [−π, π]. Due to their lack of localisation the

functions eikx are ill suited for approximating local features of the signal (features that occur

only on a certain subinterval of [−π, π]). In contrast the scaled versions on the Haar wavelet

and the Haar scaling function have compact local support and for the evaluation of the coef-

ficients (5.2.13) and (5.2.14) only information on f on the compact local support of φj,k and

ψj,k is needed. – From the numerical example illustrated in Figure 5.3 it is clear that the

Haar wavelet is not an ‘ideal’ wavelet due to its lack of smoothness (it is not even continuous).

However, there are other more complicated wavelets with compact support that offer the same

localisation advantages as the Haar wavelet but provide a better approximation quality.
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Figure 5.3: Wavelet decomposition of the function f plotted in the first row on the right: The

left column includes the approximations Pj(f) in the scale spaces Vj, where j = 0, 1, 2, 3, 4, 5

from bottom to top. The right column (apart from the top row) contains the approximations

Qj(f) in the detail spaces Wj , where j = 0, 1, 2, 3, 4 from bottom to top. Remember that

Pj+1(f) = Pj(f) +Qj(f).


