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Ex. 1.1: Matrix Multiplication

Execute the matrix multiplication



1 1 −1
−1 1 0

0 −2 1






1 2 3
4 5 6
7 8 9


 .

Solution:



1 1 −1
−1 1 0

0 −2 1






1 2 3
4 5 6
7 8 9




=




1·1 + 1·4 + (−1)·7 1·2 + 1·5 + (−1)·8 1·3 + 1·6 + (−1)·9
(−1)·1 + 1·4 + 0·7 (−1)·2 + 1·5 + 0·8 (−1)·3 + 1·6 + 0·9
0·1 + (−2)·4 + 1·7 0·2 + (−2)·5 + 1·8 0·3 + (−2)·6 + 1·9




=



−2 −1 0

3 3 3
−1 −2 −3



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Ex. 1.2: Determinants of 2× 2 and 3× 3 Matrices

Compute the determinants of the following two matrices

A =

(
1 2
3 4

)
and B =




1 2 3
4 5 6
7 8 9


 .

Solution:
det(A) = 1 · 4− 3 · 2 = 4− 6 = −2

and

det(B) = 1·5·9 + 2·6·7 + 3·4·8 − 7·5·3 − 8·6·1 − 9·4·2
= 45 + 84 + 96− 105− 48− 72

= 225− 225 = 0.
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Ex. 1.3: General Formula for the Determinant

Use the expansion with respect to the first column formula from page 17
of the lecture slides to compute the determinant of

B =




1 2 3
4 5 6
7 8 9


 .

Solution: We expand with respect to the first column:

det(B) = (−1)1+1 · 1 · det

(
5 6
8 9

)
+ (−1)2+1 · 4 · det

(
2 3
8 9

)

+(−1)3+1 · 7 · det

(
2 3
5 6

)

= [5·9− 8·6] − 4 · [2·9 − 8·3] + 7 · [2·6− 5·3]

= [45− 48]− 4 · [18 − 24] + 7 · [12− 15] = −3 + 24− 21 = 0.
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Ex. 1.4: Eigenvectors and Eigenvalues

Consider the symmetric matrix

A =




3
2 0 1

2

0 3 0

1
2 0 3

2


 ,

1 Compute the eigenvalues λ1 ≥ λ2 ≥ λ3 and the corresponding
eigenvectors x1, x2, x3 of A (where Axi = λi xi , i = 1, 2, 3).

2 Find an orthogonal matrix S such that

S−1 AS = S′ AS =




λ1 0 0
0 λ2 0
0 0 λ3


 , (1)

with λ1 ≥ λ2 ≥ λ3. Execute the matrix multiplication in (1) to verify
that you have chosen S correctly.
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Ex. 1.4: Eigenvectors and Eigenvalues

Solution of Part 1: We find the zeros/roots the characteristic polynomial

p(A, λ) = det
(
λ I− A

)

of A: Using the rule for the determinant of 3× 3 matrices yields

p(A, λ) = det
(
λ I− A

)
= det




λ− 3
2 0 −1

2

0 λ− 3 0

−1
2 0 λ− 3

2




=

(
λ− 3

2

)2

(λ− 3)−
(
− 1

2

)2

(λ− 3)

=

(
λ2 − 3λ+

9

4
− 1

4

)
(λ− 3)

=
(
λ2 − 3λ+ 2

)
(λ− 3) = (λ− 1) (λ − 2) (λ− 3),

and we see that the eigenvalues are λ1 = 3, λ2 = 2, and λ3 = 1.
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Ex. 1.4: Eigenvectors and Eigenvalues

To find the eigenvectors, we solve (λj I− A) xj = 0 for j = 1, 2, 3.

More precisely, for each value of λi we have to solve the linear system



λi − 3
2 0 −1

2

0 λi − 3 0

−1
2 0 λi − 3

2







x

y

z


 =




0

0

0


 , (2)

where the eigenvector xi is denoted by xi = (x , y , z)′.

We note that this is the same as solving the linear system
(
λi − 3

2

)
· x + 0 · y − 1

2 · z = 0

0 · x + (λi − 3) · y + 0 · z = 0

−1
2 · x + 0 · y +

(
λi − 3

2

)
· z = 0

(3)

and it is also equivalent to solving Axi = λi xi . However, it is more
convenient (less computational work!) to use a system with a zero vector
on the right-hand side, and so we prefer to work with (2) or (3).
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Ex. 1.4: Eigenvectors and Eigenvalues

The mathematically economical way to solve such a linear system is to
write is as an augmented matrix (A − λi I|0), more explicitly:




λi − 3
2 0 −1

2

0 λi − 3 0

−1
2 0 λi − 3

2

∣∣∣∣∣∣∣

0

0

0


 . (4)

You can do this for any linear system Ax = b and would have (A|b); the
last column contains the right-hand side b of the linear system.

On (4) (and more generally on (A|b)) we can now perform elementary row
operations (important: also apply the operation to the last column!):

multiply/divide a row by a real number

add/subtract a row from another row.

swap two rows

combinations: add/subtract a multiple of a row to/from another row
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Ex. 1.4: Eigenvectors and Eigenvalues

For λ1 = 3, we first add the third row to the first row.



3
2 0 −1

2

0 0 0

−1
2 0 3

2

∣∣∣∣∣∣∣

0

0

0


 ⇔




1 0 1

0 0 0

−1
2 0 3

2

∣∣∣∣∣∣∣

0

0

0




Subsequently we add 1/2 times the new first row to the third row. Then
we divide the new third row by 2.

⇔




1 0 1
0 0 0
0 0 2

∣∣∣∣∣∣

0
0
0


 ⇔




1 0 1
0 0 0
0 0 1

∣∣∣∣∣∣

0
0
0


 .

Finally, we subtract the new third row from the new first row.

⇔




1 0 0
0 0 0
0 0 1

∣∣∣∣∣∣

0
0
0


 ⇔ x1 = α




0
1
0


 , α ∈ R. (5)

Setting x3 = (x , y , z)′ we get, x = 0, z = 0, y = α for any real number α.
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Ex. 1.4: Eigenvectors and Eigenvalues

(The notation α ∈ R in (5) means: α is an element of the real numbers R.)

For λ2 = 2, we add the first row to the third row.




1
2 0 −1

2

0 −1 0

−1
2 0 1

2

∣∣∣∣∣∣∣

0

0

0


 ⇔




1
2 0 −1

2

0 −1 0

0 0 0

∣∣∣∣∣∣∣

0
0
0




Then we multiply the first row by 2 and multiply the second row by (−1)

⇔




1 0 −1
0 1 0
0 0 0

∣∣∣∣∣∣

0
0
0


 ⇔ x2 = β




1
0
1


 , β ∈ R.

In the last step we have used that the linear system provides the equations
x − z = 0 and y = 0 if we denote x1 = (x , y , z)′. Hence y = 0 and
x = z = β for any choice of the real number β.
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Ex. 1.4: Eigenvectors and Eigenvalues

For λ3 = 1, we subtract the first row from the third row.



− 1

2 0 −1
2

0 −2 0

−1
2 0 − 1

2

∣∣∣∣∣∣∣

0

0

0


 ⇔



− 1

2 0 −1
2

0 −2 0

0 0 0

∣∣∣∣∣∣∣

0

0

0




Then we multiply the first row by (−2) and multiply the second row by
(−1/2) and obtain

⇔




1 0 1
0 1 0
0 0 0

∣∣∣∣∣∣

0
0
0


 ⇔ x3 = γ




1
0
−1


 , γ ∈ R.

In the last step we have used that the linear system provides the equations
x + z = 0 and y = 0 if we denote x3 = (x , y , z)′. Hence y = 0, z = −x
and x = γ for any real number γ.
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Ex. 1.4: Eigenvectors and Eigenvalues

We summarize our results so far:

λ1 = 3 has the eigenvectors x1 =




0
α
0


 ,

λ2 = 2 has the eigenvectors x2 =




β
0
β


 ,

λ3 = 1 has the eigenvectors x3 =




γ
0
−γ


 ,

where the real numbers α, β, γ can have any value apart from zero.
(Eigenvectors must be different from the zero vector; hence we must
exclude α = 0, β = 0 and γ = 0.)
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Ex. 1.4: Eigenvectors and Eigenvalues

Solution of Part 2: Since A is symmetric , its eigenvectors to different
eigenvalues are orthogonal . Thus we obtain a suitable orthogonal matrix S
by choosing normalized eigenvectors (i.e. eigenvectors with length 1).

From the results in the previous part of this question, the vectors

x1 =




0
1
0


 , x2 =




1/
√

2
0

1/
√

2


 , and x3 =




1/
√

2
0

−1/
√

2




are normalized eigenvectors to the eigenvalues λ1 = 3, λ2 = 2, and
λ3 = 1, respectively, and they are orthogonal to each other. (Note: To get
a normalized eigenvector, divide the eigenvector by its length.)

Thus we choose the orthogonal matrix to be

S =




0 1√
2

1√
2

1 0 0

0 1√
2
− 1√

2


 and S′ = S−1 =




0 1 0

1√
2

0 1√
2

1√
2

0 − 1√
2


 .
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Ex. 1.4: Eigenvectors and Eigenvalues

To confirm that we have correctly chosen an orthogonal matrix S, we
execute the matrix multiplications S′ S and SS′.

S′ S =




0 1 0

1√
2

0 1√
2

1√
2

0 − 1√
2







0 1√
2

1√
2

1 0 0

0 1√
2
− 1√

2


 =




1 0 0

0 1 0

0 0 1


 ,

SS′ =




0 1√
2

1√
2

1 0 0

0 1√
2
− 1√

2







0 1 0

1√
2

0 1√
2

1√
2

0 − 1√
2


 =




1 0 0

0 1 0

0 0 1


 .

This shows that S′ S = SS′ = I and hence S′ = S−1, i.e. our S is an
orthogonal matrix.
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Ex. 1.4: Eigenvectors and Eigenvalues

From executing the matrix multiplications, we find

S′ AS =




0 1 0

1√
2

0 1√
2

1√
2

0 − 1√
2







3
2 0 1

2

0 3 0

1
2 0 3

2







0 1√
2

1√
2

1 0 0

0 1√
2
− 1√

2




=




0 1 0

1√
2

0 1√
2

1√
2

0 − 1√
2







0
√

2 1√
2

3 0 0

0
√

2 − 1√
2




=




3 0 0

0 2 0

0 0 1


 ,

as desired.
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Ex. 1.5: Mean, Variance, Covariance and Correlation

Consider the random variables X = mark of students in percentage and
Y = age of the student. In a sample of 3 students we found the values

x1 = 80, x2 = 90, x3 = 70 and y1 = 24, y2 = 23, y3 = 22

for X and Y , respectively. Estimate the covariance and the correlation
coefficient of X and Y from the sample.

Solution: From the examples on the lecture slides, we already know that
the mean of X is x = 80 and that the empirical standard deviation of X is
sX = 10.

y =
1

3

(
y1 + y2 + y3

)
=

1

3
(24 + 23 + 22) =

69

3
= 23

s2
Y =

1

3− 1

[
(y1 − y)2 + (y2 − y)2 + (y3 − y)2

]

=
1

2

[
(24− 23)2 + (23− 23)2 + (22 − 23)2

]
=

1

2

[
12 + (−1)2

]
= 1
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Ex. 1.5: Mean, Variance, Covariance and Correlation

Hence we find that the mean of Y is y = 23 and that the empirical
standard deviation of Y is sY =

√
1 = 1.

Next we compute the empirical covariance of X and Y :

Ĉov(X ,Y )

=
1

3− 1

[
(x1 − x) (y1 − y) + (x2 − x) (y2 − y)2 + (x3 − x) (y3 − y)2

]

=
1

2

[
(80 − 80)·(24 − 23) + (90 − 80)·(23 − 23) + (70− 80)·(22 − 23)

]

=
1

2

[
0 · 1 + 10 · 0 + (−10) · (−1)

]
=

10

2
= 5.

The empirical correlation coefficient is given by

̺̂(X ,Y ) =
Ĉov(X ,Y )

sX ·sY
=

5

10 · 1 =
1

2
.
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Ex. 1.6: Formal Manipulations of Expectation Values

Let X , Y and W be random variables with expectation values µX = E(X ),
µY = E (Y ) and µW = E (W ) and standard deviations σX , σY and σW ,
respectively. Let a, b and c be real numbers. Use

E(a·X + b ·Y ) = a · E(X ) + b · E(Y ). (6)

to verify the following relations:

E
([

a·(X − µX ) + b ·(Y − µY )
]
·
[
c ·(W − µW )

])

= a·c · Cov(X ,W ) + b ·c · Cov(Y ,W ),

Var(a·X ) = a2 · Var(X ).

Solution: We start by determining the various terms from executing the
multiplication of the two terms of which we take the expectation value.
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Ex. 1.6: Formal Manipulations of Expectation Values

E
([

a·(X − µX ) + b ·(Y − µY )
]
·
[
c ·(W − µW )

])

= E
(
a·(X − µX ) · c ·(W − µW ) + b ·(Y − µY ) · c ·(W − µW )

)

= E
(
(a·c) · (X − µX )·(W − µW ) + (b ·c) · (Y − µY )·(W − µW )

)

= (a·c) · E
(
(X − µX )·(W − µW )

)
+ (b ·c) · E

(
(Y − µY )·(W − µW )

)

= (a·c) · Cov(X ,W ) + (b ·c) · Cov(Y ,W ),

where we have used (6) in the 4th step. We note that it was essential that
we kept the centered variables (X − µX ), (Y − µY ) and (W − µW ).

To verify Var(a·X ) = a2 · Var(X ), we express Var(a·X ) as an expectation
value: Using that (from (6) with b = 0) E(a·X ) = a · E(X ), we have

Var(a·X ) = E
(
[a·X − E(a·X )]2

)
= E

(
[a·X − a·E(X )]2

)

= E
(
a2 ·[X − E(X )]2

)
= a2 · E

(
[X − E(X )]2

)
= a2 · Var(X ).
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Ex. 2.1: Standardized Data in Example & Toy Exercise

Given the rating for vitamins (= X1), rating for calories (= X2), rating for
shelf live date (= X3) and rating for price (= X4) for 5 types of cereal in
the following table, compute the data for the corresponding standardized
variables Z1, . . . ,Z4 and write down the standardized data matrix :

Cereal X1 (Vitamins) X2 (Calories) X3 (Shelf Live) X4 (Price)

e1 4 2 3 3

e2 2 4 3 3

e3 3 3 3 3

e4 3 3 2 4

e5 3 3 4 2
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Ex. 2.1: Standardized Data in Example & Toy Exercise

Solution: For each random variable Xj , we first compute the mean xj

x1 = 1
5 ·
(
4 + 2 + 3 + 3 + 3

)
= 15

3 = 3,

x2 = 1
5 ·
(
2 + 4 + 3 + 3 + 3

)
= 15

3 = 3,

x3 = 1
5 ·
(
3 + 3 + 3 + 2 + 4

)
= 15

3 = 3,

x4 = 1
5 ·
(
3 + 3 + 3 + 4 + 2

)
= 15

3 = 3,

and the empirical variance s2
j and empirical standard deviation sj

s2
1 = 1

4 ·
(
12 + (−1)2 + 0 + 0 + 0

)
= 2

4 = 1
2 ⇒ s1 = 1√

2
,

s2
2 = 1

4 ·
(
(−1)2 + 12 + 0 + 0 + 0

)
= 2

4 = 1
2 ⇒ s2 = 1√

2
,

s2
3 = 1

4 ·
(
0 + 0 + 0 + (−1)2 + 12

)
= 2

4 = 1
2 ⇒ s3 = 1√

2
,

s2
4 = 1

4 ·
(
0 + 0 + 0 + 12 + (−1)2

)
= 2

4 = 1
2 ⇒ s4 = 1√

2
.
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Ex. 2.1: Standardized Data in Example & Toy Exercise

The standardized data for the variable Xj and the cereal ei is given by

zij =
xij − xj

sj
=

xij − 3

1/
√

2
=
√

2·(xij−3), where xij = value of Xj for cereal ei

Thus we find the standardized data matrix :

Z =




√
2 −

√
2 0 0

−
√

2
√

2 0 0

0 0 0 0

0 0 −
√

2
√

2

0 0
√

2 −
√

2




← standardized data for cereal e1

← standardized data for cereal e2

← standardized data for cereal e3

← standardized data for cereal e4

← standardized data for cereal e5

↑ ↑ ↑ ↑
Z1 Z2 Z3 Z4

where Zj is the standardized variable the corresponds to Xj .
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Ex. 2.2: Some Model Equations in the Toy Exercise

Write down the model equations for each random variable Xj for cereals e1

and e2. Inspect the model equations:

What are the unknowns?
Compare the model equations with the equations in (multiple)
regression. Where lies the difference?

Solution We start by inspecting an individual equation: For cereal e1 and
random variable Z1 (standardized variable corresponding to X1) we have
the model equation:

√
2 = a1,1 ·f1,1 + a1,2 ·f1,2 + . . .+ a1,p ·f1,p + u1,1.

The factor loadings ajk depend on the random variable Xj and the
factors Fk but not on the different types of cereal.
The values fik of the factors Fk depend on the different types of
cereal ei but are the same for all random variables Xj .
The unique factors uik depend on the random variable Xk and on the
type of cereal ei .
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Ex. 2.2: Some Model Equations in the Toy Exercise

r. var. model equations for e1 model equations for e2

Z1

√
2 = a1,1 ·f1,1 + a1,2 ·f1,2

+ . . .+ a1,p ·f1,p + u1,1

−
√

2 = a1,1 ·f2,1 + a1,2 ·f2,2
+ . . .+ a1,p ·f2,p + u2,1

Z2
−
√

2 = a2,1 ·f1,1 + a2,2 ·f1,2
+ . . .+ a2,p ·f1,p + u1,2

√
2 = a2,1 ·f2,1 + a2,2 ·f2,2

+ . . .+ a2,p ·f2,p + u2,2

Z3
0 = a3,1 ·f1,1 + a3,2 ·f1,2

+ . . . + a3,p ·f1,p + u1,3

0 = a3,1 ·f2,1 + a3,2 ·f2,2
+ . . .+ a3,p ·f2,p + u2,3

Z4
0 = a4,1 ·f1,1 + a4,2 ·f1,2

+ . . . + a4,p ·f1,p + u1,4

0 = a4,1 ·f2,1 + a4,2 ·f2,2
+ . . .+ a4,p ·f2,p + u2,4

We note that in each equation the factor loadings (coefficients) ajk and
the values of the factors fik are the unknowns.
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Ex. 2.2: Some Model Equations in the Toy Exercise

The model equation for cereal e1 and random variable X1

√
2 = a1,1 ·f1,1 + a1,2 ·f1,2 + . . .+ a1,p ·f1,p + u1,1.

looks like the equation of a (multivariate) regression.

However, in regression we would also know values for the factors, but
these are unknown!
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Ex. 2.3: Correlation Matrix

Compute the correlation matrix for our toy example.

Solution: Using the standardized data matrix from Ex. 2.1 we have

R =
1

5− 1
Z′ Z

=
1

4




√
2 −

√
2 0 0 0

−
√

2
√

2 0 0 0

0 0 0 −
√

2
√

2

0 0 0
√

2 −
√

2







√
2 −

√
2 0 0

−
√

2
√

2 0 0

0 0 0 0

0 0 −
√

2
√

2

0 0
√

2 −
√

2




=
1

4




4 −4 0 0

−4 4 0 0

0 0 4 −4

0 0 −4 4


 =




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1


 .
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Ex. 2.4: Communalities and Reduced Correlation Matrix

For our toy example, estimate the communalities with method 1 (see page
57 of the lecture slides) and estimate Rh for our toy example.

Solution: In Ex. 2.3 we found the correlation matrix

R = (ri ,k) =




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1


 ,

and from method 1 we get the following estimates of the communalities:

ĥ1
2

= max
k 6=1
|r1,k | = max{0, | − 1|} = 1,

ĥ2
2

= max
k 6=2
|r2,k | = max{0, | − 1|} = 1,

ĥ3
2

= max
k 6=3
|r3,k | = max{0, | − 1|} = 1,

ĥ4
2

= max
k 6=4
|r4,k | = max{0, | − 1|} = 1.
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Ex. 2.4: Communalities and Reduced Correlation Matrix

To estimate the reduced correlation matrix Rh = R−Ψ, we need to

replace the jth diagonal entry rjj of R by the estimate of communality ĥj

2
.

Here we find that

rjj = ĥj

2
= 1 for j = 1, 2, . . . , 4.

Hence

R̂h = R =




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1


 ,

i.e. the estimated reduced correlation matrix R̂h is identical to the
correlation matrix R.
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Ex. 2.5: Estimating the Factor Loading Matrix with PCA

Estimate the factor loading matrix A for our toy example using the Kaiser
criterion. Write down the explicit model equations and interpret them.

Solution: Step 1 : We start by computing the eigenvalues of R = Rh:

det(λ I− R) =




λ− 1 1 0 0

1 λ− 1 0 0

0 0 λ− 1 1

0 0 1 λ− 1




= (λ− 1) det




λ− 1 0 0

0 λ− 1 1

0 1 λ− 1


− det




1 0 0

0 λ− 1 1

0 1 λ− 1




= (λ− 1) ·
[
(λ− 1)3 − (λ− 1)

]
−
[
(λ− 1)2 − 1

]
,

where we have expanded the determinant with respect to the first row and
then used the formula for the determinants of 3× 3 matrices.
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Ex. 2.5: Estimation of the Factor Loading Matrix

We simplify, and use the binomial formulas a2 − 2·a·b + b2 = (a− b)2 and
c2 − d2 = (c − d)·(c + d).

det(λ I− R) = (λ− 1) ·
[
(λ− 1)3 − (λ− 1)

]
−
[
(λ− 1)2 − 1

]

=
[
(λ− 1)2

]2
︸ ︷︷ ︸

= a2

− 2 (λ− 1)2︸ ︷︷ ︸
=−2·a·b

+ 1︸︷︷︸
= b2

=
[
(λ− 1)2︸ ︷︷ ︸

= a

− 1︸︷︷︸
= b

]2

=
[
(λ− 1)2︸ ︷︷ ︸

= c2

− 1︸︷︷︸
= d2

]2
=
[
(λ− 1− 1)︸ ︷︷ ︸

= c−d

· (λ− 1 + 1)︸ ︷︷ ︸
= c+d

]2

=
[
(λ− 2) · λ

]2
= (λ− 2)2 · λ2

Thus we find the eigenvalues

λ1 = 2, λ2 = 2, λ3 = 0, λ4 = 0.

Next we compute the corresponding eigenvectors by solving the linear
system (λj I− R)bj = 0 for each eigenvalue λj .

Dr. Kerstin Hesse (HHL) Solutions: Structural Equation Modeling HHL, June 1-2, 2012 33 / 126



Ex. 2.5: Estimation of the Factor Loading Matrix

For λ1 = λ2 = 2 we have to solve:

(2 I− R |0) =




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

∣∣∣∣∣∣∣∣

0
0
0
0


 ⇔




1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

∣∣∣∣∣∣∣∣

0
0
0
0




In the first step, we have subtracted the 1st row from the 2nd row, and we
have subtracted the 3rd row from the 4th row.

Thus we obtain for the eigenvectors b = (w , x , y , z)′ the equations
(

w + x = 0 and y + z = 0
)
⇔

(
x = −w and z = −y

)

From these equations, two normalized orthogonal eigenvectors for
λ1 = λ2 = 2 are

b1 =
1√
2




1
−1

0
0


 and b2 =

1√
2




0
0
1
−1


 .
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Ex. 2.5: Estimation of the Factor Loading Matrix

For λ3 = λ4 = 0 we have to solve:

(0 I− R |0) =




−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 −1

∣∣∣∣∣∣∣∣

0
0
0
0


 ⇔




−1 1 0 0
0 0 0 0
0 0 −1 1
0 0 0 0

∣∣∣∣∣∣∣∣

0
0
0
0




In the first step, we have added the 1st row from the 2nd row, and we
have added the 3rd row from the 4th row.

Thus we obtain for the eigenvectors b = (w , x , y , z)′ the equations
(
− w + x = 0 and − y + z = 0

)
⇔

(
x = w and z = y

)

From these equations, two normalized orthogonal eigenvectors for
λ3 = λ4 = 0 are

b3 =
1√
2




1
1
0
0


 and b4 =

1√
2




0
0
1
1


 .
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Ex. 2.5: Estimation of the Factor Loading Matrix

Step 2 : We have found only 2 positive eigenvalues λ1 = λ2 = 2 with two
corresponding orthogonal eigenvectors

b1 =
1√
2




1
−1

0
0


 and b2 =

1√
2




0
0
1
−1


 .

Thus we initially choose

A =
(√

λ1 b1,
√
λ2 b2

)
=
(√

2 b1,
√

2b2

)
=




1 0
−1 0

0 1
0 −1


 .

Step 3 : The Kaiser criterion suggests to use only those eigenvalues λj

(and the corresponding eigenvectors bj) that satisfy λj > 1.

For our example we have λ1 = λ2 = 2 > 1, and hence we keep our initial
choice of A, and we have found p = 2 factors.
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Ex. 2.5: Estimation of the Factor Loading Matrix

Out of interest, we test how well AA′ reproduces the matrix R:

AA′ =




1 0
−1 0

0 1
0 −1



(

1 −1 0 0
0 0 1 −1

)
=




1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1




︸ ︷︷ ︸
= R

We note that we are here in the unusual situation that

R = AA′ + Ψ with Ψ = 0.

As Ψ is the model covariance matrix of the unique factors, Ψ = 0 tells us
that ψjj = 0 (i.e. Var(Uj) is estimated to be zero) for j = 1, 2, . . . , 4. Since
by assumption E(Uj) = 0, based on our sampled data we expect Uj = 0
for j = 1, 2, . . . , 4.

Thus, based on our sample, our factor analysis model with the two factors
appears to be an exact model without model errors.
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Ex. 2.5: Estimation of the Factor Loading Matrix

Explicit Model Equations: From

A =




1 0
−1 0

0 1
0 −1




we have: a1,1 = 1, a1,2 = 0 (for Z1); a2,1 = −1, a2,2 = 0 (for Z2);
a3,1 = 0, a3,2 = 1 (for Z3); and a4,1 = 0, a4,2 = −1 (for Z4).

Thus the model equations are given by:

Z1 = a1,1 ·F1 + a1,2 ·F2 + U1 = F1 + U1 = F1,

Z2 = a2,1 ·F1 + a2,2 ·F2 + U1 = −F1 + U2 = −F1,

Z3 = a3,1 ·F1 + a3,2 ·F2 + U1 = F2 + U3 = F2,

Z4 = a4,1 ·F1 + a4,2 ·F2 + U1 = −F2 + U4 = −F2,

where, in the last step, we have used that our factor analysis model
appears to be exact (no error terms Uj required; see last page).
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Ex. 2.5: Estimation of the Factor Loading Matrix

Interpretation of the Model Equations and the Factors:

Z1 = F1 + U1 = F1,

Z2 = −F1 + U2 = −F1,

Z3 = F2 + U3 = F2,

Z4 = −F2 + U4 = −F2,

We observe that:

F1 is positively correlated to X1 = rating for vitamins and negatively
correlated to X2 = rating for calories. F1 is uncorrelated to
X3 = rating for shelf life date and X4 = rating for price.

F2 is positively correlated to X3 = rating for shelf life date and
negatively correlated to X4 = rating for price. F2 is uncorrelated to
X1 = rating for vitamins and X2 = rating for calories.

Thus we may interpret F1 as healthiness and F2 as cost effectiveness.
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Ex. 2.5: Estimation of the Factor Loading Matrix

The diagram below describes our factor analytic model :

Z   (vitamins) +1

−1

+1

−1

1

2

3

4

1

2

F  = healthiness

F  = cost effectiveness
Z   (shelf live date)

Z   (price)

Z   (calories)
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Ex. 2.6: Factor Values

Compute the factor values for our toy example.

Solution: From the least squares equations we have to compute

F′ = (A′ A)−1A′ Z′.

We start by computing A′ A and its inverse matrix (A′ A)−1

A′A =

(
1 −1 0 0
0 0 1 −1

)



1 0
−1 0

0 1
0 −1


 =

(
2 0
0 2

)

(A′A)−1 = =
1

4

(
2 0

0 2

)
=

(
1
2 0

0 1
2

)
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Ex. 2.6: Factor Values

Next we compute F′ from F′ = (A′ A)−1A′Z′.

F′ = (A′ A)−1A′ Z′

=

(
1
2 0

0 1
2

)(
1 −1 0 0

0 0 1 −1

)



√
2 −

√
2 0 0 0

−
√

2
√

2 0 0 0

0 0 0 −
√

2
√

2

0 0 0
√

2 −
√

2




=

(
1
2 0

0 1
2

)(
2
√

2 −2
√

2 0 0 0

0 0 0 −2
√

2 2
√

2

)

=

( √
2 −

√
2 0 0 0

0 0 0 −
√

2
√

2

)
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Ex. 2.6: Factor Values

Taking the transpose of F′, the matrix F of the factor values is given by

F(fij) =




√
2 0

−
√

2 0

0 0

0 −
√

2

0
√

2




We find that the factor values in our example are:

f1,1 =
√

2 and f1,2 = 0 for cereal e1

f2,1 = −
√

2 and f2,2 = 0 for cereal e2

f3,1 = 0 and f3,2 = 0 for cereal e3

f4,1 = 0 and f4,2 = −
√

2 for cereal e4

f5,1 = 0 and f5,2 =
√

2 for cereal e5
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Ex. 2.7: Interpretation

Interpret the factor values for our example.

Solution: The factor values f1,1 =
√

2, f1,2 = 0 for cereal e1 indicate an
above average healthiness and an average cost effectiveness.

The factor values f2,1 = −
√

2, f2,2 = 0 for cereal e2 indicate a below
average healthiness and an average cost effectiveness.

The factor values f3,1 = 0, f3,2 = 0 for cereal e3 indicate an average
healthiness and an average cost effectiveness.

The factor values f4,1 = 0, f4,2 = −
√

2 for cereal e4 indicate an average
healthiness and a below average cost effectiveness.

The factor values f5,1 = 0, f5,2 =
√

2 for cereal e5 indicate an average
healthiness and an above average cost effectiveness.

These interpretations agree with the ratings given as data in our example.
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Ex. 3.1: Setting up the Structural (Inner) Model

A model for the work of a software programmer on an non-pay-scale salary
is shown in the diagram below. Indicate the various latent variables and
the coefficients and error terms in the diagram, using the rules explained
on pages 71–72 of the lecture slides. For consistency, number any
exogenous (or endogenous) latent variables from top to bottom. Finally
write down the equations for the structural (inner) model .

intelligence

motivation

initiative

pay / salary

Dr. Kerstin Hesse (HHL) Solutions: Structural Equation Modeling HHL, June 1-2, 2012 46 / 126



Ex. 3.1: Setting up the Structural (Inner) Model

Solution: Exogenous latent variables: ξ1 = pay/salary, ξ2 = intelligence.
Endogenous latent variables: η1 = motivation, η2 = initiative.

We note that we have a two-way relationship between η1 = motivation
and η2 = initiative; they influence each other .

initiativeζ
ξη

η

γ

γ

γ

ββ

ζ

2

1
1

2 2

21
2112

11

22

ξ 1

motivation pay / salary 

intelligence
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Ex. 3.1: Setting up the Structural (Inner) Model

The structural (inner) model is given by

η1 = β1,2 η2 + γ1,1 ξ1 + ζ1

η2 = β2,1 η1 + γ2,1 ξ1 + γ2,2 ξ2 + ζ2

or equivalently in matrix notation

(
η1

η2

)
=

(
0 β1,2

β2,1 0

)(
η1

η2

)
+

(
γ1,1 0
γ2,1 γ2,2

)(
ξ1
ξ2

)
+

(
ζ1
ζ2

)
,

i.e. η = Bη + Γ ξ + ζ with

ξ =

(
ξ1
ξ2

)
, η =

(
η1

η2

)
, ζ =

(
ζ1
ζ2

)
,

B =

(
0 β1,2

β2,1 0

)
, Γ =

(
γ1,1 0
γ2,1 γ2,2

)
.
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Ex. 3.2: Reduced Model

Write down the reduced model for the structural (inner) model from
Ex. 3.1.

Solution: In Ex. 3.1 we found the linear system
(
η1

η2

)
=

(
0 β1,2

β2,1 0

)(
η1

η2

)
+

(
γ1,1 0
γ2,1 γ2,2

)(
ξ1
ξ2

)
+

(
ζ1
ζ2

)
.

We subtract the first term on the right-hand side on both sides:
(
η1

η2

)
−
(

0 β1,2

β2,1 0

)(
η1

η2

)
=

(
γ1,1 0
γ2,1 γ2,2

)(
ξ1
ξ2

)
+

(
ζ1
ζ2

)
.

(7)
Next we transform the left-hand side in (7)

(
η1

η2

)
−
(

0 β1,2

β2,1 0

)(
η1

η2

)

=

(
1 0
0 1

)(
η1

η2

)
−
(

0 β1,2

β2,1 0

)(
η1

η2

)
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Ex. 3.2: Reduced Model

=

[(
1 0
0 1

)
−
(

0 β1,2

β2,1 0

)](
η1

η2

)

=

(
1 β1,2

β2,1 1

)(
η1

η2

)
.

We substitute the result back into (7) and get
(

1 β1,2

β2,1 1

)

︸ ︷︷ ︸
= B∗

(
η1

η2

)
=

(
γ1,1 0
γ2,1 γ2,2

)(
ξ1
ξ2

)
+

(
ζ1
ζ2

)
.

With

(B∗)−1 =
1

1− β2,1 β1,2

(
1 −β1,2

−β2,1 1

)

we now obtain the reduced model(
η1

η2

)
= (B∗)−1

(
γ1,1 0
γ2,1 γ2,2

)(
ξ1
ξ2

)
+ (B∗)−1

(
ζ1
ζ2

)
.
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Ex. 3.3: Formative Measurement Model

Starting the numbering of the measurement variables at the top, indicate
the measurement variables, error terms and coefficients in the following
diagram of a formative measurement model . Then write down the
regression equation for the exogenous latent variable ξ2.

2

in baking
properties for use

easy to spread

shelf−by date

useability of a  
margarine

storage 
requirements

ξ
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Ex. 3.3: Formative Measurement Model

Solution: First we complete the diagram.

X

in baking
properties for use

easy to spread

shelf−by date

useability of a  
margarine

storage 
requirements

1

2

3

4

λ

λ

λ

λ

21

22

23

24

δ2ξ
2

X

X

X

X
X

X

X
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Ex. 3.3: Formative Measurement Model

We note that we call the measurement variables Xi because the latent
variable is an exogenous latent variable (indicated by its name ξ2).

(The numbering of the measurement variables is of course arbitrary; we
could equally well have started from the bottom rather than from the top.
However, a change in the numbering of the measurement variables will
also result in a change of the indices of the path coefficients.)

Likewise we call the error term δ2 since the latent variable ξ2 is exogenous.

Further we note that the coefficient between Xi and ξ2 is λX
2i because the

arrow points from Xi to ξ2. (Notation: first index of the coefficient =
index of the variable that the arrow is pointing to; second index = index of
the variable that the arrow originates at.)

Regression equation for the measurement model of the latent variable:

ξ2 = λX
2,1 (X1−µX1

)+λX
2,2 (X2−µX2

)+λX
2,3 (X3−µX3

)+λX
2,4 (X4−µX4

)+δ2
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Ex. 3.4: Reflective Measurement Model

The diagram below shows part of a structural equation model for the
academic success of students. Numbering the measurement variables from
the top to the bottom, complete the diagram of the reflective measurement
model by indicating the variables, error terms and coefficients. Then write
down the factor analytic equations for the measurement variables.

1intelligence

effort

IQ rating

study per week
hours of regular

marks

hours of extra 
study

ξ

ξ 2
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Ex. 3.4: Reflective Measurement Model

Solution: First we complete the diagram.

δ

intelligence

effort

IQ rating

study per week
hours of regular

marks

hours of extra 
study

ξ

ξ 2

1

1

2

1

2

3

3

4
4

λ

λ

λ

λ

X

X

X

11

21

22

32

X
42

X

λ

X

X

X

X

δ

δ

δ
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Ex. 3.4: Reflective Measurement Model

We note that we call the measurement variables Xi and call their error
terms δi because the latent variables are exogenous latent variables (as
indicated by their names ξ1 and ξ2).

Further we note that the coefficient between Xi and ξj is λX
ij because the

arrow points from ξj to Xi . (Notation: first index of the coefficient =
index of the variable that the arrow is pointing to; second index = index of
the variable that the arrow originates at.)

Factor analytical equations for the measurement model of the latent
variables:

X1 − µX1
= λX

1,1 ξ1 + δ1

X2 − µX2
= λX

2,1 ξ1 + λX
2,2 ξ2 + δ2

X3 − µX3
= λX

3,2 ξ2 + δ3

X4 − µX4
= λX

4,2 ξ2 + δ4
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Ex. 4.1: Structural Equation Model with LISREL

The structural model for the work of a software programmer on a
non-pay-scale salary (see Ex. 3.1) has now been equipped with the
reflective measurement models for the latent variables shown below.
Indicate all variables, errors and coefficients in the diagram and write down
the equations of the measurement models. The ratings (apart from the IQ
one) have been provided by the programmer’s superior.

IQ rating

rating for work 
independence

rating for work
initiative

average number  
of lines code writ−
ten per week

work per week
average hours of  

motivation

initiative

pay / salary 

intelligence

salary
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Ex. 4.1: Structural Equation Model with LISREL

Solution: First we complete the diagram by indicating all variables, errors
and coefficients.

Xξη

η

γ

γ

γ

ββ

1

2 2

21
2112

11

22

ξ 1

ζ 1

ζ 2

average hours of  
work per week

rating for work 
independence

rating for work
initiative

average number  
of lines code writ−
ten per week

motivation

initiative intelligence

pay / salary 
salary

IQ rating

ε

ε

ε

1

2

3

4

ε

δ

δ

1

2

λ

λ

11

22

λ

λ

11

21

32

42λ

λ
X

X

Y

Y

Y

Y

1

2

3

4

Y

Y

Y

Y

X

2

1

Structural (inner) model (from Ex. 3.1):

η1 = β1,2 η2 + γ1,1 ξ1 + ζ1

η2 = β2,1 η1 + γ2,1 ξ1 + γ2,2 ξ2 + ζ2
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Ex. 4.1: Structural Equation Model with LISREL

Measurement Models for the endogenous latent variables:

Y1 − µY1
= λY

1,1 η1 + ε1

Y2 − µY2
= λY

2,1 η1 + ε2

}
measurement model for η1

Y3 − µY3
= λY

3,2 η2 + ε3

Y4 − µY4
= λY

4,2 η2 + ε4

}
measurement model for η2

Measurement Models for the exogenous latent variables:

X1 − µX1
= λX

1,1 ξ1 + δ1 (measurement model for ξ1)

X2 − µX2
= λX

2,2 ξ2 + δ2 (measurement model for ξ2)

We note that here we have only reflective measurement models.

Unlike in this example, the exogenous latent variables could (and usually
will) also have more than one measurement variable.
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Ex. 4.1: Structural Equation Model with LISREL

Finally we write the models in matrix notation.

From Ex. 3.1 we find for the structural (inner) model :

η = Bη + Γ ξ + ζ

with

ξ =

(
ξ1
ξ2

)
, η =

(
η1

η2

)
, ζ =

(
ζ1
ζ2

)
,

B =

(
0 β1,2

β2,1 0

)
, Γ =

(
γ1,1 0
γ2,1 γ2,2

)
.

Explicitly, we have the matrix equation

(
η1

η2

)
=

(
0 β1,2

β2,1 0

)(
η1

η2

)
+

(
γ1,1 0
γ2,1 γ2,2

)(
ξ1
ξ2

)
+

(
ζ1
ζ2

)
.
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Ex. 4.1: Structural Equation Model with LISREL

For the exogenous latent variables, the measurement model in matrix
notation reads:

(
X1

X2

)
−
(
µX1

µX2

)
=

(
λX

1,1 0

0 λX
2,2

)(
ξ1

ξ2

)
+

(
δ1

δ2

)

or in shorter notation
x− µx = ΛX ξ + δ

with

x =

(
X1

X2

)
, µx =

(
µX1

µX2

)
, ξ =

(
ξ1

ξ2

)
,

δ =

(
δ1

δ2

)
, ΛX =

(
λX

1,1 0

0 λX
2,2

)
.
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Ex. 4.1: Structural Equation Model with LISREL

For the endogenous latent variables, the measurement model in matrix
notation reads:



Y1

Y2

Y3

Y4


−




µY1

µY2

µY3

µY4


 =




λY
1,1 0

λY
2,1 0

0 λY
3,2

0 λY
4,2




(
η1

η2

)
+




ε1

ε2

ε3

ε4




or in shorter notation
y − µy = ΛY η + ε

with η =

(
η1

η2

)
and

y =




Y1

Y2

Y3

Y4


, µy =




µY1

µY2

µY3

µY4


, ε =




ε1

ε2

ε3

ε4


, ΛY =




λY
1,1 0

λY
2,1 0

0 λY
3,2

0 λY
4,2


.
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Ex. 4.2: Empirical Covariance Matrix

Given the data below for the measurement variables X1 = yearly salary in
1000 Euros, Y1 = average hours of work per week, Y2 = average number
of lines of code per week (measured in units of 100 lines of code), for a
software programmer on a non-pay-scale salary, compute the empirical
covariance matrix S.

Programmer X1 Y1 Y2

e1 50 45 50

e2 60 55 55

e3 70 50 60

Solution: We start by computing the means of the data of the
measurement variables:

x1 =
1

3

(
50 + 60 + 70

)
=

180

3
= 60,
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Ex. 4.2: Empirical Covariance Matrix

y1 =
1

3

(
45 + 55 + 50

)
=

150

3
= 50,

y2 =
1

3

(
50 + 55 + 60

)
=

165

3
= 55.

Hence the expectation values µX1
, µY1

and µY2
are estimated by x1 = 60,

y1 = 50 and y2 = 55. Now we can write down the centered data matrix

W =




x1,1 − x1 y1,1 − y1 y1,2 − y2

x2,1 − x1 y2,1 − y1 y2,2 − y2

x3,1 − x1 y3,1 − y1 y3,2 − y2




=




50− 60 45− 50 50− 55

60− 60 55− 50 55− 55

70− 60 50− 50 60− 55


 =



−10 −5 −5

0 5 0

10 0 5


 .
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Ex. 4.2: Empirical Covariance Matrix

The empirical covariance matrix is given by:

S =
1

3− 1
W′ W =

1

2



−10 0 10

−5 5 0

−5 0 5






−10 −5 −5

0 5 0

10 0 5




=
1

2




100 + 0 + 100 50 + 0 + 0 50 + 0 + 50

50 + 0 + 0 25 + 25 + 0 25 + 0 + 0

50 + 0 + 50 25 + 0 + 0 25 + 0 + 25




=
1

2




200 50 100

50 50 25

100 25 50


 =




100 25 50

25 25 12.5

50 12.5 25



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Ex. 4.3: Solving a Structural Equation Model with LISREL

To demonstrate the solution of a structural equation model with LISREL,
we consider the simplified model for the work of a software programmer on
a non-pay-scale salary shown in the diagram below.

X

salary salarymotivation

average hours
of work per
week

λ
ζ

ξ
γθε

λ

λ 11

1η1 1

1

11

11

21

ε 1

ε 2

12

=1
δ  = 0= 0

=1

average num−
ber of lines of
code per week

X1

2Y

Y1

Y

Y

1 Set up the structural equation model by specifying the structural
(inner) model and the measurement model.

2 Determine with the LISREL approach the model parameters in terms
of the covariances of the measurement variables.

3 Use the empirical covariance matrix from Ex. 4.2 to compute the
numerical values for the parameters and interpret your results.
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Ex. 4.3: Solving a Structural Equation Model with LISREL

Solution: The structural (inner) model consists here of the one equation:

η1 = γ1,1 ξ1 + ζ1 (8)

The measurement model consists of the three equations:

X1 − µX1
= ξ1 (since δ1 = 0 and λX

1,1 = 1) (9)

Y1 − µY1
= η1 + ε1 (sine λY

1,1 = 1) (10)

Y2 − µY2
= λY

2,1 η1 + ε2 (11)

We note that δ1 = 0 and λX
1,1 = 1 are chosen because the latent variable

ξ1 = salary is measured directly and without error (hence δ1 = 0). Hence
ξ1 automatically has a scale. The choice λY

1,1 = 1 however, is simply made
to give the latent variable η1 a scale.

Apart from these equations we are given the information that the error
terms ε1 and ε2 of Y1 and Y2, respectively, are uncorrelated , since

θε1,2 = Cov(ε1, ε2) = 0. (12)
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Ex. 4.3: Solving a Structural Equation Model with LISREL

We have q = 1 measurement variables X1 for ξ1, and we have p = 2
measurement variables Y1 and Y2 for η1. Hence we get

(p + q)(p + q + 1)

2
=

(2 + 1)(2 + 1 + 1)

2
=

12

2
= 6

different entries in the covariance matrix of the measurement variables.
These 6 different entries in the covariance matrix are the variances

Var(X1), Var(Y1) and Var(Y2), (13)

and the covariances

Cov(X1,Y1), Cov(X1,Y2) and Cov(Y1,Y2). (14)

Inspecting our model (see the diagram) we find that we have also 6
unknown model parameters: From the structural (inner) model we have
the parameters

γ1,1, φ1,1 = Var(ξ1) and ψ1,1 = Var(ζ1)
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Ex. 4.3: Solving a Structural Equation Model with LISREL

and from the (outer) measurement model we have the parameters

λX
2,1, θε1,1 = Var(ε1) and θε2,2 = Var(ε2).

Normally we would also have to consider the parameter θδ1,1 = Var(δ1),
but since δ1 = 0 (as ξ1 is measured exactly) we clearly have

θδ1,1 = Var(δ1) = 0. (15)

As we have 6 unknown model parameters and also 6 different entries in
the covariance matrix, our LISREL model could be identifiable.

Next we use the equations (8) to (11), as well as the additional
information from (12) and (15), to compute the entries (13) and (14) of
the covariance matrix in terms of the model parameters.

Afterwards we will try to solve these 6 equations for the model parameters.
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Ex. 4.3: Solving a Structural Equation Model with LISREL

Before we start to compute the variances (13) and the covariances (14),
we remember the assumptions from the LISREL model for our concrete
example:

E(ξ1) = 0, E(η1) = 0, Cov(ξ1, ζ1) = 0, (16)

E(ζ1) = 0, E(ε1) = 0, E(ε2) = 0, (17)

Cov(ε1, η1) = 0, Cov(ε2, η1) = 0, Cov(ε1, ξ1) = 0, (18)

Cov(ε2, ξ1) = 0, Cov(ε1, ζ1) = 0, Cov(ε2, ζ1) = 0, (19)

From (9) we have

Var(X1) = E
(
[X1 − µX1

]2
)

= E(ξ21) = E
(
[ξ1 − E(ξ1)︸ ︷︷ ︸

= 0

]2
)

= Var(ξ1) = φ1,1,

where we have used the first equation in (16) in the second last step. This
identifies the model parameter φ1,1 = Var(ξ1) uniquely:

φ1,1 = Var(ξ1) = Var(X1). (20)

Dr. Kerstin Hesse (HHL) Solutions: Structural Equation Modeling HHL, June 1-2, 2012 71 / 126



Ex. 4.3: Solving a Structural Equation Model with LISREL

From (10) we have

Var(Y1) = E
(
[Y1 − µY1

]2
)

= E
(
[η1 + ε1]

2
)

= E
(
η2
1 + 2 η1 ε1 + ε21

)

= E(η2
1) + 2E(η1 ε1) + E(ε21)

= E
(
[η1 − E(η1)︸ ︷︷ ︸

=0

]2
)

+ 2E
(
[η1 − E(η1)︸ ︷︷ ︸

= 0

] [ε1 − E(ε1)︸ ︷︷ ︸
= 0

]
)

+ E
(
[ε1 − E(ε1)︸ ︷︷ ︸

= 0

]2
)

= Var(η1) + 2 Cov(η1, ε1)︸ ︷︷ ︸
= 0

+Var(ε1)

= Var(η1) + Var(ε1) = Var(η1) + θε1,1

where we have used the linearity of the expectation value and the
assumptions (16) to (18). So we have found the equation

Var(Y1) = Var(η1) + θε1,1 (21)

which contains an additional unknown Var(η1) that we need to eliminate
when we determine our parameters.
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Ex. 4.3: Solving a Structural Equation Model with LISREL

From (11) we have

Var(Y2) = E
(
[Y2 − µY2

]2
)

= E
(
[λY

2,1 η1 + ε2]
2
)

= E
(
(λY

2,1)
2 η2

1 + 2λY
2,1 η1 ε2 + ε22

)

= (λY
2,1)

2 E(η2
1) + 2λY

2,1 E(η1 ε2) + E(ε22)

= (λY
2,1)

2 E
(
[η1 − E(η1)︸ ︷︷ ︸

= 0

]2
)

+ 2λY
2,1 E

(
[η1 − E(η1)︸ ︷︷ ︸

= 0

] [ε2 − E(ε2)︸ ︷︷ ︸
=0

]
)

+E
(
[ε2 − E(ε2)︸ ︷︷ ︸

= 0

]2
)

= (λY
2,1)

2 Var(η1) + 2λY
2,1 Cov(η1, ε2)︸ ︷︷ ︸

=0

+Var(ε2)

= (λY
2,1)

2 Var(η1) + Var(ε2) = (λY
2,1)

2 Var(η1) + θε2,2,

where we have used the linearity of the expectation value and the
assumptions (16) to (18).
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Ex. 4.3: Solving a Structural Equation Model with LISREL

So we have found the equation

Var(Y2) = (λY
2,1)

2 Var(η1) + θε2,2 (22)

which also contains the additional unknown Var(η1) that we need to
eliminate when we determine our parameters.

From (9) and (10) we have

Cov(X1,Y1) = E
(
[X1 − µX1

] [Y1 − µY1
]
)

= E
(
ξ1 [η1 + ε1]

)

= E
(
ξ1 η1 + ξ1 ε1

)
= E(ξ1 η1) + E(ξ1 ε1)

= E
(
[ξ1 − E(ξ1)︸ ︷︷ ︸

= 0

] [η1 − E(η1)︸ ︷︷ ︸
=0

]
)

+ E([ξ1 − E(ξ1)︸ ︷︷ ︸
=0

] [ε1 − E(ε1)︸ ︷︷ ︸
= 0

])

= Cov(ξ1, η1) + Cov(ξ1, ε1)︸ ︷︷ ︸
= 0

= Cov(ξ1, η1),

where we have used the linearity of the expectation value and the
assumptions (16) to (18).
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Ex. 4.3: Solving a Structural Equation Model with LISREL

So we have found the equation

Cov(X1,Y1) = Cov(ξ1, η1), (23)

with the unknown Cov(ξ1, η1) that we still need to eliminate when we
determine the model parameters.

From (9) and (11) we find

Cov(X1,Y2) = E
(
[X1 − µX1

] [Y1 − µY2
]
)

= E
(
ξ1 [λY

2,1 η1 + ε2]
)

= E
(
λY

2,1 ξ1 η1 + ξ1 ε2
)

= λY
2,1 E(ξ1 η1) + E(ξ1 ε2)

= λY
2,1 E

(
[ξ1 − E(ξ1)︸ ︷︷ ︸

=0

] [η1 − E(η1)︸ ︷︷ ︸
= 0

]
)

+ E([ξ1 − E(ξ1)︸ ︷︷ ︸
= 0

] [ε2 − E(ε2)︸ ︷︷ ︸
= 0

])

= λY
2,1 Cov(ξ1, η1) + Cov(ξ1, ε2)︸ ︷︷ ︸

= 0

= λY
2,1 Cov(ξ1, η1),

where we have used the linearity of the expectation value and the
assumptions (16), (17) and (19).
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Ex. 4.3: Solving a Structural Equation Model with LISREL

So we have found the equation

Cov(X1,Y2) = λY
2,1 Cov(ξ1, η1), (24)

with the unknown Cov(ξ1, η1) that we still need to eliminate when we
determine the model parameters.

From (10) and (11) we find

Cov(Y1,Y2) = E
(
[Y1 − µY1

] [Y2 − µY2
]
)

= E
(
[η1 + ε1] [λ

Y
2,1 η1 + ε2]

)

= E
(
λY

2,1 η
2
1 + η1 ε2 + λY

2,1 ε1 η1 + ε1 ε2
)

= λY
2,1 E(η2

1) + E(η1 ε2) + λY
2,1 E(ε1 η1) + E(ε1 ε2)

= λY
2,1 E

(
[η1 − E(η1)︸ ︷︷ ︸

= 0

]2
)

+ E([η1 − E(η1)︸ ︷︷ ︸
=0

] [ε2 − E(ε2)︸ ︷︷ ︸
=0

])

+λY
2,1 E

(
[ε1 − E(ε1)︸ ︷︷ ︸

=0

] [η1 − E(η1)︸ ︷︷ ︸
= 0

]
)

+ E([ε1 − E(ε1)︸ ︷︷ ︸
= 0

] [ε2 − E(ε2)︸ ︷︷ ︸
=0

])
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Ex. 4.3: Solving a Structural Equation Model with LISREL

Cov(Y1,Y2) = λY
2,1 Var(η1) + Cov(η1, ε2)︸ ︷︷ ︸

= 0

+λY
2,1 Cov(ε1, η1)︸ ︷︷ ︸

=0

+ Cov(ε1, ε2)︸ ︷︷ ︸
= θε

1,2 = 0

= λY
2,1 Var(η1),

where we have used the linearity of the expectation value, the condition
(12) and the assumptions (16) to (18).
So we have found the equation

Cov(Y1,Y2) = λY
2,1 Var(η1), (25)

with the unknown Var(η1) that we still need to eliminate when we
determine the model parameters.

We summarize the 6 equations for the covariance of the measurement
variables on the next slide.

Then use equation (8) from the structural (inner) model to first compute
and then eliminate the unknowns Var(η1) and Cov(ξ1, η1).
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Ex. 4.3: Solving a Structural Equation Model with LISREL

From (20) to (25) we have the 6 equations:

Var(X1) = φ1,1 (26)

Var(Y1) = Var(η1) + θε1,1 (27)

Var(Y2) = (λY
2,1)

2 Var(η1) + θε2,2 (28)

Cov(X1,Y1) = Cov(ξ1, η1) (29)

Cov(X1,Y2) = λY
2,1 Cov(ξ1, η1) (30)

Cov(Y1,Y2) = λY
2,1 Var(η1) (31)

Next we use the equation (8) from the structural (inner) model to
compute Var(η1) and Cov(ξ1, η1):
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Ex. 4.3: Solving a Structural Equation Model with LISREL

Var(η1) = E
(
[η1 − E(η1)︸ ︷︷ ︸

=0

]2
)

= E(η2
1) = E

(
[γ1,1 ξ1 + ζ1]

2
)

= E
(
γ2
1,1 ξ

2
1 + 2 γ1,1 ξ1 ζ1 + ζ2

1

)

= γ2
1,1 E(ξ21) + 2 γ1,1 E(ξ1 ζ1) + E(ζ2

1 )

= γ2
1,1 E

(
[ξ1 − E(ξ1)︸ ︷︷ ︸

= 0

]2
)

+ 2 γ1,1 E
(
[ξ1 − E(ξ1)︸ ︷︷ ︸

= 0

] [ζ1 − E(ζ1)︸ ︷︷ ︸
=0

]
)

+ E
(
[ζ − E(ζ1)︸ ︷︷ ︸

=0

]2
)

= γ2
1,1 Var(ξ1)︸ ︷︷ ︸

=φ1,1

+2 γ1,1 Cov(ξ1, ζ1)︸ ︷︷ ︸
= 0

+ Var(ζ1)︸ ︷︷ ︸
=ψ1,1

= γ2
1,1 φ1,1 + ψ1,1,

where we have used the linearity of the expectation value and the
assumptions (16) and (17).
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Ex. 4.3: Solving a Structural Equation Model with LISREL

Cov(ξ1, η1) = E
(
[ξ1 − E(ξ1)︸ ︷︷ ︸

= 0

] [η1 − E(η1)︸ ︷︷ ︸
= 0

]
)

= E(ξ1 η1)

= E
(
ξ1 [γ1,1 ξ1 + ζ1]

)
= E

(
γ1,1 ξ

2
1 + ξ1 ζ1

)
= γ1,1 E(ξ21) + E(ξ1 ζ1)

= γ1,1 E
(
[ξ1 − E(ξ1)︸ ︷︷ ︸

= 0

]2
)

+ E
(
[ξ1 − E(ξ1)︸ ︷︷ ︸

= 0

] [ζ1 − E(ζ1)︸ ︷︷ ︸
=0

]
)

= γ1,1 Var(ξ1)︸ ︷︷ ︸
=φ1,1

+ Cov(ξ1, ζ1)︸ ︷︷ ︸
= 0

= γ1,1 φ1,1,

where we have used the linearity of the expectation value and the
assumptions (16) and (17).

So in addition to (26) to (31), we have found:

Var(η1) = γ2
1,1 φ1,1 + ψ1,1 (32)

Cov(ξ1, η1) = γ1,1 φ1,1 (33)
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Ex. 4.3: Solving a Structural Equation Model with LISREL

We have 8 equations (26) to (33) and 8 unknown parameters γ1,1, φ1,1,
ψ1,1, λ

Y
2,1, θ

ε
1,1, θ

ε
2,2 and Var(η1), Cov(ξ1, η1). First we note that from (26)

φ1,1 = Var(X1). (34)

Then we substitute the expression for Cov(ξ1, η1) from (33) into (29) and
subsequently use (34)

Cov(X1,Y1) = γ1,1 φ1,1 = γ1,1 Var(X1).

Hence, we get

γ1,1 =
Cov(X1,Y1)

Var(X1)
. (35)

Then we substitute in (30) Cov(ξ1, η1) by (29) and get

Cov(X1,Y2) = λY
2,1 Cov(X1,Y1).
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Ex. 4.3: Solving a Structural Equation Model with LISREL

Hence, we get

λY
2,1 =

Cov(X1,Y2)

Cov(X1,Y1)
. (36)

Next we substitute Var(η1) in (31) by (32)

Cov(Y1,Y2) = λY
2,1

[
γ2
1,1 φ1,1 + ψ1,1

]
= λY

2,1 γ
2
1,1 φ1,1 + λY

2,1 ψ1,1

and solve for ψ1,1

ψ1,1 =
1

λY
2,1

[
Cov(Y1,Y2)−λY

2,1 γ
2
1,1 φ1,1

]
=

Cov(Y1,Y2)

λY
2,1

− γ2
1,1 φ1,1. (37)

Now we use (34), (35) and (36) to eliminate all the other parameters in
(37):

ψ1,1 =
Cov(X1,Y1)

Cov(X1,Y2)
Cov(Y1,Y2)−

(
Cov(X1,Y1)

Var(X1)

)2

Var(X1),
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Ex. 4.3: Solving a Structural Equation Model with LISREL

and simplifying we find

ψ1,1 =
Cov(X1,Y1)

Cov(X1,Y2)
Cov(Y1,Y2)−

[Cov(X1,Y1)]
2

Var(X1)
. (38)

Next we solve (27) for θε1,1 and subsequently substitute Var(η) by (32)

θε1,1 = Var(Y1)− Var(η1). (39)

We note that from rearranging (31)

Var(η1) =
Cov(Y1,Y2)

λY
2,1

. (40)

Substituting (40) and subsequently (36) into (39) yields

θε1,1 = Var(Y1)−
Cov(Y1,Y2)

λY
2,1

= Var(Y1)−
Cov(Y1,Y2) Cov(X1,Y1)

Cov(X1,Y2)
,
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Ex. 4.3: Solving a Structural Equation Model with LISREL

and hence

θε1,1 = Var(Y1)−
Cov(Y1,Y2) Cov(X1,Y1)

Cov(X1,Y2)
. (41)

Finally from solving (28) for θε2,2 we get

θε2,2 = Var(Y2)− (λY
2,1)

2 Var(η1). (42)

Substituting (40) into (42) yields

θε2,2 = Var(Y2)− (λY
2,1)

2 Cov(Y1,Y2)

λY
2,1

= Var(Y2)− λY
2,1 Cov(Y1,Y2),

and finally substituting λY
2,1 buy (36) yields

θε2,2 = Var(Y2)−
Cov(X1,Y2) Cov(Y1,Y2)

Cov(X1,Y1)
. (43)
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Ex. 4.3: Solving a Structural Equation Model with LISREL

We summarize the formulas (34), (35), (36), (38), (41) and (43) that
identify the 6 model parameters:

φ1,1 = Var(X1) (44)

γ1,1 =
Cov(X1,Y1)

Var(X1)
(45)

λY
2,1 =

Cov(X1,Y2)

Cov(X1,Y1)
(46)

ψ1,1 =
Cov(X1,Y1)

Cov(X1,Y2)
Cov(Y1,Y2)−

[Cov(X1,Y1)]
2

Var(X1)
(47)

θε1,1 = Var(Y1)−
Cov(Y1,Y2) Cov(X1,Y1)

Cov(X1,Y2)
(48)

θε2,2 = Var(Y2)−
Cov(X1,Y2) Cov(Y1,Y2)

Cov(X1,Y1)
(49)
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Ex. 4.3: Solving a Structural Equation Model with LISREL

Finally the empirical covariance matrix from Ex. 4.2 is given by

S =




V̂ar(X1) Ĉov(X1,Y1) Ĉov(X1,Y2)

Ĉov(Y1,X1) V̂ar(Y1) Ĉov(Y1,Y2)

Ĉov(Y2,X1) Ĉov(Y2,Y1) V̂ar(Y2)




=




100 25 50

25 25 12.5

50 12.5 25


 .

Thus the variances and covariances are estimated by:

V̂ar(X1) = 100, V̂ar(Y1) = 25, V̂ar(Y2) = 25, (50)

Ĉov(X1,Y1) = 25, Ĉov(X1,Y2) = 50, Ĉov(Y1,Y2) = 12.5. (51)

Substituting the estimated values of the variances and covariances in (50)
and (51) into (44) to (49) yields:
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Ex. 4.3: Solving a Structural Equation Model with LISREL

φ1,1 = 100

γ1,1 =
25

100
=

1

4
= 0.25

λY
2,1 =

50

12.5
= 2

ψ1,1 =
25 · 12.5

50
− (25)2

100
= 6.25 − 25

4
= 6.25 − 6.25 = 0

θε1,1 = 25− 12.5 · 25
50

= 25− 6.25 = 18.75

θε2,2 = 25− 50 · 12.5
25

= 25− 25 = 0

Inspecting the model parameters briefly, we note that we have no negative
variances, since φ1,1 = Var(ξ1) = 100, ψ1,1 = Var(ζ1) = 0,
θε1,1 = Var(ε1) = 18.75 and θε2,2 = 0. So this makes sense.
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Ex. 4.3: Solving a Structural Equation Model with LISREL

Next we inspect the path coefficients γ1,1 = 0.25 and λY
2,1 = 2 which are

both positive. This makes sense, as our logical considerations tell us:

The higher the salary, the higher we expect the motivation of the
software programmer to be. Hence, γ1,1 should be positive.

The higher the motivation of the software programmer, the more lines
of code we expect him to write per week. Hence, λY

2,1 should be
positive.

So our LISREL model result coincides with our logical considerations.

Now the model would have to be tested with model quality criteria that
are beyond the scope of this course. Also, its is clear that our sample size
was much to small to give representative results.
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

For the SEM in the example on pages 125–127 (which describes the work
of a software programmer on a non-pay-scale salary) we were given the
SEM diagram (in PLS notation) below

2

salarymotivation

average hours
of work per
week

λ
ζ

ξ

λ

λ 11

1

1

22
average num−
ber of lines of
code per week

X
ξ 2 salary X

12
δ

δ2

21
β

Measurement Block 2 for 

Measurement Block 1 for ξ

ξ 2

1

1 δ    = 0(1)
1
(1)

1

1

(2)

(2)

(2)

(2)X

and we found the model equations:

ξ2 = β2,1 ξ1 + ζ1 for the structural (inner) model, (52)
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

and

X
(1)
1 − µ

X
(1)
1

= λ1,1 ξ1 + δ
(1)
1 for the measurement block for ξ1 (53)

X
(2)
1 − µ

X
(2)
1

= λ1,2 ξ2 + δ
(2)
1

X
(2)
2 − µ

X
(2)
2

= λ2,2 ξ2 + δ
(2)
2



 for the measurement block for ξ2 (54)

Now we are given the following data

Programmer X
(1)
1 X

(2)
1 X

(2)
2

e1 50 45 50

e2 60 55 55

e3 70 50 60
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

for the measurement variables: X
(1)
1 = yearly salary in 1000 Euros,

X
(2)
1 = average hours of work per week, X

(2)
2 = average number of lines of

code per week (measured in units of 100 lines of code). Using equal
weights as the initial weights, execute step 1 of the PLS algorithm.

Solution: As a preparation we compute the values of the centered data:

Measurement Block 1 for ξ1: We have the mean

x
(1)
1 = 1

3

(
50 + 60 + 70

)
= 180

3 = 60,

and hence the centered data for X
(1)
1 is given by

x
(1)
1,1 − x

(1)
1 = 50− 60 = −10,

x
(1)
2,1 − x

(1)
1 = 60− 60 = 0, (55)

x
(1)
3,1 − x

(1)
1 = 70− 60 = 10.
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

Measurement Block 2 for ξ2: We have the means

x
(2)
1 = 1

3

(
45+55+50

)
= 150

3 = 50, x
(2)
2 = 1

3

(
50+55+60

)
= 165

3 = 55.

Hence the centered data for X
(2)
1 is given by

x
(2)
1,1 − x

(2)
1 = 45− 50 = −5,

x
(2)
2,1 − x

(2)
1 = 55− 50 = 5, (56)

x
(2)
3,1 − x

(2)
1 = 50− 50 = 0,

and the centered data for X
(2)
2 is given by

x
(2)
1,2 − x

(2)
2 = 50− 55 = −5,

x
(2)
2,2 − x

(2)
2 = 55− 55 = 0, (57)

x
(2)
3,2 − x

(2)
2 = 60− 55 = 5.
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

Next we determine the initial equal weights:

Weights for measurement Block 1 for ξ1 : w
(1)
1 = 1 (58)

Weights for measurement Block 2 for ξ2 : w
(2)
1 = 1

2 , w
(2)
2 = 1

2 (59)

Step 1, Block 1 : First we compute the data for η1. Using (58) and (55)

η1,1 = ±w
(1)
1

(
x

(1)
1,1 − x

(1)
1

)
= ±1 · (−10) = ∓10,

η2,1 = ±w
(1)
1

(
x

(1)
2,1 − x

(1)
1

)
= ±1 · 0 = 0, (60)

η3,1 = ±w
(1)
1

(
x

(1)
3,1 − x

(1)
1

)
= ±1 · 10 = ±10.

We note that here we have no summation as ξ1 has only one measurement
variable and hence there is only one term (in the sum) in the formula for
computing the values ηnq for ηq.
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

Next we estimate the covariance Cov(η1,X
(1)
1 ) from the the data (60) and

(55) in oder to choose the correct sign in (60). We note that η1 = 0.

Ĉov(η1,X
(1)
1 )

= 1
3−1

[
η1,1

(
x

(1)
1,1 − x

(1)
1

)
+ η2,1

(
x

(1)
2,1 − x

(1)
1

)
+ η3,1

(
x

(1)
3,1 − x

(1)
1

)]

= 1
2

[
(∓10) · (−10) + 0 · 0 + (±10) · (10)

]
= 1

2

[
± 100 + (±100)

]
= ±100.

Hence the estimated correlation is positive if we choose the plus sign in
(60), and then we have

η1,1 = −10, η2,1 = 0, η3,1 = 10. (61)

The data (61) of η1 has already mean η1 = 0 and we compute its standard
deviation

sη1 =
√

1
2

(
η2
1,1 + η2

2,1 + η2
3,1

)
=
√

1
2

(
(−10)2 + 02 + 102

)
=
√

100 = 10.
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

Thus the data of the estimator ξ̂1 of ξ1 is given by

ξ1,1 =
η1,1−η1

sη1
= −10

10 = −1,

ξ2,1 =
η2,1−η1

sη1
= 0

10 = 0, (62)

ξ3,1 =
η3,1−η1

sη1
= 10

10 = 1.

Step 1, Block 2 : First we compute the data for η2. Using (59), (56) and
(57), we get

η1,2 = ±
[
w

(2)
1

(
x

(2)
1,1 − x

(2)
1

)
+ w

(2)
2

(
x

(2)
1,2 − x

(2)
2

)]

= ±
[

1
2 · (−5) + 1

2 · (−5)
]

= ∓5, (63)

η2,2 = ±
[
w

(2)
1

(
x

(2)
2,1 − x

(2)
1

)
+ w

(2)
2

(
x

(2)
2,2 − x

(2)
2

)]
= ±

[
1
2 · 5 + 1

2 · 0
]

= ±5
2 ,

η3,2 = ±
[
w

(2)
1

(
x

(2)
3,1 − x

(2)
1

)
+ w

(2)
2

(
x

(2)
3,2 − x

(2)
2

)]
= ±

[
1
2 · 0 + 1

2 · 5
]

= ±5
2 .
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

Using (56), (57), (63) and the facts that η2 = 0 we estimate the

covariances Cov(η2,X
(2)
1 ) and Cov(η2,X

(2)
2 ) in order to choose the correct

sign in (63).

Ĉov(η2,X
(2)
1 )

= 1
3−1

[
η1,2

(
x

(2)
1,1 − x

(2)
1

)
+ η2,2

(
x

(2)
2,1 − x

(2)
1

)
+ η3,2

(
x

(2)
3,1 − x

(2)
1

)]

= 1
2

[
(∓5) · (−5) +

(
±5

2

)
· 5 +

(
±5

2

)
· 0
]

= ±75
4 ,

Ĉov(η2,X
(2)
2 )

= 1
3−1

[
η1,2

(
x

(2)
1,2 − x

(2)
2

)
+ η2,2

(
x

(2)
2,2 − x

(2)
2

)
+ η3,2

(
x

(2)
3,2 − x

(2)
2

)]

= 1
2

[
(∓5) · (−5) +

(
±5

2

)
· 0 +

(
±5

2

)
· 5
]

= ±75
4 .

Hence we choose the plus sign in (63) and get the following data for η2

η1,2 = −5, η2,2 = 5
2 , η3,2 = 5

2 .
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

We note that η2 = 0 and estimate the standard deviation of η2

sη2 =
√

1
2

(
η2
1,2 + η2

2,2 + η2
3,2

)
=

√
1
2

(
(−5)2 +

(
5
2

)2
+
(

5
2

)2)
=
√

75
4 = 5·

√
3

2 .

Thus the data of the estimator ξ̂1 of ξ1 is given by

ξ1,2 =
η1,2−η2

sη2
= 2·(−5)

5·
√

3
= − 2√

3
,

ξ2,2 =
η2,2−η2

sη2
= 2·(5/2)

5·
√

3
= 1√

3
, (64)

ξ3,2 =
η3,2−η2

sη2
= 2·(5/2)

5·
√

3
= 1√

3
.

For the subsequent steps we summarize the results from (62) and (64):

Data for estimator ξ̂1 of ξ1: ξ1,1 = −1, ξ2,1 = 0, ξ3,1 = 1. (65)

Data for estimator ξ̂2 of ξ2: ξ1,2 = − 2√
3
, ξ2,2 = 1√

3
, ξ3,2 = 1√

3
. (66)
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Ex. 5.1 (b) Step 2 of the Iterative Algorithm

Using the results from Ex. 5.1 (a) for the structural equation model given
in Ex. 5.1 (a), execute step 2 of the iterative algorithm with the centroid
weights scheme.

Solution: Step 2, Approximation for ξ1: The latent variable ξ1 is only
linked to ξ2. Thus the data for ρ1 = e1,2 ξ2 is given by

ρn,1 = e1,2 ξn,2 with e1,2 = sign of Ĉov(ξ̂1, ξ̂2). (67)

From (65) and (66) we find

Ĉov(ξ̂1, ξ̂2) = 1
3−1 [ξ1,1 ξ1,2 + ξ2,1 ξ2,2 + ξ3,1 ξ3,2]

= 1
2

[
(−1) ·

(
− 2√

3

)
+ 0 · 1√

3
+ 1 · 1√

3

]
=

√
3

2 . (68)

Hence we have e1,2 = 1, and (67) becomes

ρn,1 = e1,2 ξn,2 = ξn,2. (69)
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Ex. 5.1 (b) Step 2 of the Iterative Algorithm

Substituting the data (66) into (69) yields

ρ1,1 = − 2√
3
, ρ2,1 = 1√

3
, ρ3,1 = 1√

3
,

and since this data is already standardized we have νn,1 = ρn,1. Thus,

data for ν1: ν1,1 = − 2√
3
, ν2,1 = 1√

3
, ν3,1 = 1√

3
. (70)

Step 2, Approximation for ξ2: The latent variable ξ2 is only linked to ξ1.
Thus the data for ρ2 = e2,1 ξ1 is given by

ρn,2 = e2,1 ξn,1 with e2,1 = sign of Ĉov(ξ̂2, ξ̂1). (71)

Since Ĉov(ξ̂2, ξ̂1) = Ĉov(ξ̂1, ξ̂2), we have from (68) that e2,1 = 1, and (71)
becomes

ρn,2 = e2,1 ξn,1 = ξn,1. (72)
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Ex. 5.1 (b) Step 2 of the Iterative Algorithm

Substituting the data (65) into (72) yields

ρ1,2 = −1, ρ2,2 = 0, ρ3,2 = 1,

and since this data is already standardized we have νn,1 = ρn,1. Thus,

data for ν2: ν1,2 = −1, ν2,2 = 0, ν3,2 = 1. (73)
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Ex. 5.1 (c) Step 3 (Mode A) of the Iterative Algorithm

Using the results from Ex. 5.1 (a) to (b) for the structural equation model
given in Ex. 5.1 (a), execute step 3 of the iterative algorithm.

Solution: New Weights for Bock 1 : The new weight is given by

w
(1)
1 = Ĉov(X

(1)
1 , ν1)

= 1
3−1

[(
x

(1)
1,1 − x

(1)
1

)
ν1,1 +

(
x

(1)
2,1 − x

(1)
1

)
ν2,1 +

(
x

(1)
3,1 − x

(1)
1

)
ν3,1

]

= 1
2

[
(−10) ·

(
− 2√

3

)
+ 0 · 1√

3
+ 10 · 1√

3

]
= 1

2
30√
3

= 5 ·
√

3.

where we have used the data (55) for X
(1)
1 and the data (70) for ν1.

New Weights for Bock 2 : The new weights are given by

w
(2)
1 = Ĉov(X

(2)
1 , ν2)

= 1
3−1

[(
x

(2)
1,1 − x

(2)
1

)
ν1,2 +

(
x

(2)
2,1 − x

(2)
1

)
ν2,2 +

(
x

(2)
3,1 − x

(2)
1

)
ν3,2

]

= 1
2

[
(−5) · (−1) + 5 · 0 + 0 · 1

]
= 5

2 = 2.5,
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Ex. 5.1 (c) Step 3 (Mode A) of the Iterative Algorithm

w
(2)
2 = Ĉov(X

(2)
2 , ν2)

= 1
3−1

[(
x

(2)
1,2 − x

(2)
2

)
ν1,2 +

(
x

(2)
2,2 − x

(2)
2

)
ν2,2 +

(
x

(2)
3,2 − x

(2)
2

)
ν3,2

]

= 1
2

[
(−5) · (−1) + 0 · 0 + 5 · 1

]
= 10

2 = 5,

where we have used the data (56) and (57) for X
(1)
1 and X

(2)
2 , respectively,

and the data (73) for ν2.

Summarizing we have found the following new weights for the next step 1 :

Weights for measurement Block 1 for ξ1 : w
(1)
1 = 5 ·

√
3 ≈ 8.66 (74)

Weights for measurement Block 2 for ξ2 : w
(2)
1 = 5

2 , w
(2)
2 = 5 (75)
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Ex. 5.1 (d) One More Iterative Step

Using the results from Ex. 5.1 (a) for the structural equation model given
in Ex. 5.1 (a) to (c), execute a second iterative step of the iterative
algorithm.

Solution:

Step 1, Block 1 : First we compute the data for η1. Using (74) and (55)

η1,1 = ±w
(1)
1

(
x

(1)
1,1 − x

(1)
1

)
= ±5 ·

√
3 · (−10) = ∓50 ·

√
3,

η2,1 = ±w
(1)
1

(
x

(1)
2,1 − x

(1)
1

)
= ±5 ·

√
3 · 0 = 0, (76)

η3,1 = ±w
(1)
1

(
x

(1)
3,1 − x

(1)
1

)
= ±5 ·

√
3 · 10 = ±50 ·

√
3.

Next we estimate the covariance Cov(η1,X
(1)
1 ) from the the data (76) and

(55) in oder to choose the correct sign in (76). We note that η1 = 0.
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Ex. 5.1 (d) One More Iterative Step

Ĉov(η1,X
(1)
1 )

= 1
3−1

[
η1,1

(
x

(1)
1,1 − x

(1)
1

)
+ η2,1

(
x

(1)
2,1 − x

(1)
1

)
+ η3,1

(
x

(1)
3,1 − x

(1)
1

)]

= 1
2

[
(∓50 ·

√
3) · (−10) + 0 · 0 + (±50 ·

√
3) · (10)

]
= ±500 ·

√
3.

Hence the estimated correlation is positive if we choose the plus sign in
(76), and then we have

η1,1 = −50 ·
√

3, η2,1 = 0, η3,1 = 50 ·
√

3. (77)

The data (77) of η1 has already mean η1 = 0 and we compute its standard
deviation

sη1 =
√

1
2

(
η2
1,1 + η2

2,1 + η2
3,1

)

=

√
1
2

(
(−50 ·

√
3)2 + 02 + (50 ·

√
3)2
)

=
√

75000 = 50 ·
√

3.

Thus the data of the estimator ξ̂1 of ξ1 is given by
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Ex. 5.1 (d) One More Iterative Step

ξ1,1 =
η1,1−η1

sη1
= −50·

√
3

50·
√

3
= −1,

ξ2,1 =
η2,1−η1

sη1
= 0

50·
√

3
= 0, (78)

ξ3,1 =
η3,1−η1

sη1
= 50·

√
3

50·
√

3
= 1.

Step 1, Block 2 : First we compute the data for η2. Using (75), (56) and
(57), we get

η1,2 = ±
[
w

(2)
1

(
x

(2)
1,1 − x

(2)
1

)
+ w

(2)
2

(
x

(2)
1,2 − x

(2)
2

)]

= ±
[

5
2 · (−5) + 5 · (−5)

]
= ∓75

2 , (79)

η2,2 = ±
[
w

(2)
1

(
x

(2)
2,1 − x

(2)
1

)
+ w

(2)
2

(
x

(2)
2,2 − x

(2)
2

)]
= ±

[
5
2 · 5 + 5 · 0

]
= ±25

2 ,

η3,2 = ±
[
w

(2)
1

(
x

(2)
3,1 − x

(2)
1

)
+ w

(2)
2

(
x

(2)
3,2 − x

(2)
2

)]
= ±

[
5
2 · 0 + 5 · 5

]
= ±25.

Dr. Kerstin Hesse (HHL) Solutions: Structural Equation Modeling HHL, June 1-2, 2012 106 / 126



Ex. 5.1 (d) One More Iterative Step

Using (56), (57), (79) and the facts that η2 = 0 we estimate the

covariances Cov(η2,X
(2)
1 ) and Cov(η2,X

(2)
2 ) in order to choose the correct

sign in (79).

Ĉov(η2,X
(2)
1 )

= 1
3−1

[
η1,2

(
x

(2)
1,1 − x

(2)
1

)
+ η2,2

(
x

(2)
2,1 − x

(2)
1

)
+ η3,2

(
x

(2)
3,1 − x

(2)
1

)]

= 1
2

[
(∓75

2 ) · (−5) +
(
±25

2

)
· 5 + (±5) · 0

]
= ±500

4 = ±125,

Ĉov(η2,X
(2)
2 )

= 1
3−1

[
η1,2

(
x

(2)
1,2 − x

(2)
2

)
+ η2,2

(
x

(2)
2,2 − x

(2)
2

)
+ η3,2

(
x

(2)
3,2 − x

(2)
2

)]

= 1
2

[
(∓75

2 ) · (−5) +
(
±25

2

)
· 0 + (±5) · 5

]
= ±425

4 .

Hence we choose the plus sign in (79) and get the following data for η2

η1,2 = −75
2 , η2,2 = 25

2 , η3,2 = 5.
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Ex. 5.1 (d) One More Iterative Step

We note that η2 = 0 and estimate the standard deviation of η2

sη2 =
√

1
2

(
η2
1,2 + η2

2,2 + η2
3,2

)
=

√
1
2

((
−75

2

)2
+
(

25
2

)2
+ 52

)
= 5·

√
127
2 .

Thus the data of the estimator ξ̂1 of ξ1 is given by

ξ1,2 =
η1,2−η2

sη2
= 2

5·
√

127
·
(
−75

2

)
= − 15√

127
,

ξ2,2 =
η2,2−η2

sη2
= 2

5·
√

127
· 25

2 = 5√
127
, (80)

ξ3,2 =
η3,2−η2

sη2
= 2·5

5·
√

127
= 2√

127
.

For the subsequent steps we summarize the results from (78) and (80):

Data for estimator ξ̂1 of ξ1: ξ1,1 = −1, ξ2,1 = 0, ξ3,1 = 1. (81)

Data for estimator ξ̂2 of ξ2: ξ1,2 = − 15√
127
, ξ2,2 = 5√

127
, ξ3,2 = 2√

127
. (82)
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Ex. 5.1 (d) One More Iterative Step

Step 2, Approximation for ξ1: The latent variable ξ1 is only linked to ξ2.
Thus the data for ρ1 = e1,2 ξ2 is given by

ρn,1 = e1,2 ξn,2 with e1,2 = sign of Ĉov(ξ̂1, ξ̂2). (83)

From (81) and (82) we find

Ĉov(ξ̂1, ξ̂2) = 1
3−1 [ξ1,1 ξ1,2 + ξ2,1 ξ2,2 + ξ3,1 ξ3,2]

= 1
2

[
(−1) ·

(
− 15√

127

)
+ 0 · 5√

127
+ 1 · 2√

127

]
= 17

2·
√

127
. (84)

Hence we have e1,2 = 1, and (83) becomes

ρn,1 = e1,2 ξn,2 = ξn,2. (85)

Substituting the data (82) into (85) yields

ρ1,1 = − 15√
127
, ρ2,1 = 5√

127
, ρ3,1 = 2√

127
,
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Ex. 5.1 (d) One More Iterative Step

and since this data is already standardized we have νn,1 = ρn,1. Hence,

data for ν1: ν1,1 = − 15√
127
, ν2,1 = 5√

127
, ν3,1 = 2√

127
. (86)

Step 2, Approximation for ξ2: The latent variable ξ2 is only linked to ξ1.
Thus the data for ρ2 = e2,1 ξ1 is given by

ρn,2 = e2,1 ξn,1 with e2,1 = sign of Ĉov(ξ̂2, ξ̂1). (87)

Since Ĉov(ξ̂2, ξ̂1) = Ĉov(ξ̂1, ξ̂2), we have from (84) that e2,1 = 1, and (87)
becomes

ρn,2 = e2,1 ξn,1 = ξn,1. (88)

Substituting the data (81) into (88) yields

ρ1,2 = −1, ρ2,2 = 0, ρ3,2 = 1,
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Ex. 5.1 (d) One More Iterative Step

and since this data is already standardized we have νn,1 = ρn,1. Hence,

data for ν2: ν1,2 = −1, ν2,2 = 0, ν3,2 = 1. (89)

New Weights for Bock 1 : The new weight is given by

w
(1)
1 = Ĉov(X

(1)
1 , ν1)

= 1
3−1

[(
x

(1)
1,1 − x

(1)
1

)
ν1,1 +

(
x

(1)
2,1 − x

(1)
1

)
ν2,1 +

(
x

(1)
3,1 − x

(1)
1

)
ν3,1

]

= 1
2

[
(−10) ·

(
− 15√

127

)
+ 0 · 5√

127
+ 10 · 2√

127

]
= 1

2
170√
127

= 85√
127
≈ 7.54.

where we have used the data (55) for X
(1)
1 and the data (86) for ν1.

New Weights for Bock 2 : The new weights are given by

w
(2)
1 = Ĉov(X

(2)
1 , ν2)

= 1
3−1

[(
x

(2)
1,1 − x

(2)
1

)
ν1,2 +

(
x

(2)
2,1 − x

(2)
1

)
ν2,2 +

(
x

(2)
3,1 − x

(2)
1

)
ν3,2

]
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Ex. 5.1 (d) One More Iterative Step

w
(2)
1 = Ĉov(X

(2)
1 , ν2) = 1

2

[
(−5) · (−1) + 5 · 0 + 0 · 1

]
= 5

2 = 2.5,

w
(2)
2 = Ĉov(X

(2)
2 , ν2)

= 1
3−1

[(
x

(2)
1,2 − x

(2)
2

)
ν1,2 +

(
x

(2)
2,2 − x

(2)
2

)
ν2,2 +

(
x

(2)
3,2 − x

(2)
2

)
ν3,2

]

= 1
2

[
(−5) · (−1) + 0 · 0 + 5 · 1

]
= 10

2 = 5,

where we have used the data (56) and (57) for X
(1)
1 and X

(2)
2 , respectively,

and the data (89) for ν2.

Summarizing we have found the following new weights for the next step 1 :

Weights for measurement Block 1 for ξ1 : w
(1)
1 = 85√

127
≈ 7.54 (90)

Weights for measurement Block 2 for ξ2 : w
(2)
1 = 5

2 , w
(2)
2 = 5 (91)
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Ex. 5.1 (e) Further Iterative Steps

Inspect the results and computations from Ex. 5.1 (a) to (d) for the
structural equation model given in Ex. 5.1 (a), and in particular compare

the weights w
(q)
p from the two iterative steps and observe their effect. Use

your observations to predict the results of subsequent iterative steps.
What happens after the third iterative step?

Solution: We start by comparing the weights computed in the first and
second iterative step: In both iterative steps we had (see (75) and (91))

w
(2)
1 = 5

2 and w
(2)
2 = 5, (92)

i.e. the weights for measurement block 2 have not changed. For the

weight w
(1)
1 of measurement block 1 we had different values in the two

iterative steps. In the first step we had w
(1)
1 = 5 ·

√
3 ≈ 8.66 (see (74)),

and in the second step we found (see (90))

w
(1)
1 = 85√

127
≈ 7.54. (93)
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Ex. 5.1 (e) Further Iterative Steps

Next we inspect the computation done in the steps of the algorithm and
consider what will happen in the third iterative step:

Step 1, Block 1 : Here we compute first

ηn,1 = ±w
(1)
1

(
x

(1)
n,1 − x

(1)
1

)
, (94)

where the sign has to be chosen such that Ĉov(η1,X
(1)
1 ) is positive, and

afterwards we standardize the data for η1 to obtain data for ξ̂1.

So far all our values for w
(1)
1 have been positive We note that in (94), if

w
(1)
1 > 0 and if we choose the plus sign, the data for η1 is just a positive

multiple of the data for X
(1)
1 . Thus if w

(1)
1 > 0 and if we choose the plus

sign, Ĉov(η1,X
(1)
1 ) will have the same sign as

Ĉov(X
(1)
1 ,X

(1)
1 ) = Var(X

(1)
1 ) > 0.

Hence for positive weights w
(1)
1 we must choose the plus sign in (94),
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Ex. 5.1 (e) Further Iterative Steps

and we get

ηn,1 = w
(1)
1

(
x

(1)
n,1 − x

(1)
1

)
, (95)

Next we note that, because the data (95) for η1 is obtained by multiplying

the centered data of X
(1)
1 with a positive factor, standardizing the data for

η1 will give the same result as standardizing the data for X
(1)
1 . Hence for

positive weights w
(1)
1 the data for ξ̂1 does not depend on the value of the

positive weight w
(1)
1 and we get always the same result as in the first and

second step (see (65) and (81)), namely

ξ1,1 = −1, ξ2,1 = 0, ξ3,1 = 1. (96)

In particular we will get (96) in the third iterative step.

Step 1, Block 2 : Here we first compute

ηn,2 = ±
[
w

(2)
1

(
x

(2)
n,1 − x

(2)
1

)
+ w

(2)
2

(
x

(2)
n,2 − x

(2)
2

)]
, (97)
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Ex. 5.1 (e) Further Iterative Steps

where the sign has to be chosen such that Ĉov(η2,X
(2)
1 ), Ĉov(η2,X

(2)
2 ) or

both are positive, and afterwards we standardize the data for η2 to obtain
data for ξ̂2.

As the weights w
(2)
1 and w

(2)
2 are still the same as in the previous step, we

will also get the same results for the data for ξ̂2 as in the previous step,
namely in the third iterative step we get (see (82))

ξ1,2 = − 15√
127
, ξ2,2 = 5√

127
, ξ3,2 = 2√

127
. (98)

So in the third iterative step we have found exactly the same values for the
data of ξ̂1 and ξ̂2 as in the second iterative step.

Step 2, Approximation of ξ1 and ξ2 in the inner model : Here we have two
identical weights from the centroid weighting scheme given by

e1,2 = e2,1 = sign of Ĉov(ξ̂1, ξ̂2)
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Ex. 5.1 (e) Further Iterative Steps

As the data for ξ̂1 and ξ̂2 in the third iterative step is the same same as in
the previous iterative step, their empirical covariance is also the same and
we find (see (84))

e1,2 = e2,1 = 1.

Thus the data for ρ1 and ρ2 is given by the same formulas as in the
second iterative step and we have (see (85) and (88))

ρn,1 = ξn,2 and ρn,2 = ξn,1 (99)

As the data of ξ̂1 and ξ̂2 was already standardized, (99) immediately
implies for the third iterative step

νn,1 = ξn,2 and νn,2 = ξn,1

which is just the same formula as in the second iterative step.

As we found in step 1 that the data of ξ̂1 and ξ̂2 in the third step has the
same values as in the second step, the data for ν1 and ν2 in both steps has
also the same values and we find (from (98) and (96))
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Ex. 5.1 (e) Further Iterative Steps

ν1,1 = − 15√
127
, ν2,1 = 5√

127
, ν3,1 = 2√

127
, (100)

ν1,2 = −1, ν2,2 = 0, ν3,2 = 1. (101)

(See (86) and (89) in the second iterative step for comparison.)

Step 3, computation of the new weights: The new weights are computed
with the formulas

w
(1)
1 = Ĉov(X

(1)
1 , ν1), w

(2)
1 = Ĉov(X

(2)
1 , ν2), w

(2)
2 = Ĉov(X

(2)
2 , ν2),

and as we have the same data (100) and (101) for ν1 and ν2 in the third
and second iterative step, we will also get the same weights as in the
second step. Hence, we find (see (90) and (91))

w
(1)
1 = 85√

127
≈ 7.54, w

(2)
1 = 5

2 and w
(2)
2 = 5. (102)
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Ex. 5.1 (e) Further Iterative Steps

Further Iterative Steps: As weights at the beginning of the forth iterative
step (see (102)) are the same as the weights at the beginning of the third
iterative step (see (92) and (93)), it is clear that any further iterative steps
will produce exactly the same results as the second and the third iterative
step.

What happens after the third iterative step? After each step we have to
test the stopping criterion, and in the third step we get (for the first time)
the same weights as in the previous step. Computing the stopping
criterion after step 3, we therefore find

∆ = max





∣∣(w (1)
1 )new − (w

(1)
1 )old

∣∣,
∣∣(w (2)

1 )new − (w
(2)
1 )old

∣∣,
∣∣(w (2)

2 )new − (w
(2)
2 )old

∣∣





= 0

and the iterative algorithm stops.
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Ex. 5.1 (f) Values of the Latent Variables and Path Coeffs.

Using the results from Ex. 5.1 (a) to (e) for the structural equation model
given in Ex. 5.1 (a), stop the iterative algorithm after the third step and
compute the estimates of the latent variables and the path coefficients.
Inspect your results.

Solution:

Final Values for the Latent Variables: From the considerations in
Ex. 5.1 (e) we know that the values of another application of step 1 (after
the end of the third iterative step) provide the following final values for ξ̂1
and ξ̂2 (see (96) and (98)):

ξ1,1 = −1, ξ2,1 = 0, ξ3,1 = 1, (103)

ξ1,2 = − 15√
127
, ξ2,2 = 5√

127
, ξ3,2 = 2√

127
. (104)

Computation of the Path Coefficients: Here we have to compute only one
path coefficient β2,1 (for the arrow pointing from ξ1 to ξ2).
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Ex. 5.1 (f) Values of the Latent Variables and Path Coeffs.

The matrix Ξ2 contains here only the data for the final values of the one
variable ξ1 (as this is the only variable from whom an arrow points to ξ2).
Thus (using (103))

Ξ2 =




ξ1,1
ξ2,1
ξ3,1


 =



−1

0
1


 ,

and the vector ξ2 contains the final values for ξ2 and is given by (use
(104))

ξ2 =




ξ1,2

ξ2,2

ξ3,2


 =




− 15√
127
5√
127
2√
127


 .

The coefficient β2,1 is computed with the least squares formula

β2,1 = (Ξ′
2 Ξ2)

−1Ξ′
2 ξ2. (105)
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Ex. 5.1 (f) Values of the Latent Variables and Path Coeffs.

We start by computing (Ξ′
2 Ξ2)

−1,

Ξ′
2 Ξ2 = (−1, 0, 1)



−1

0
1


 = (−1)2 + 02 + 12 = 2

and thus
(Ξ′

2 Ξ2)
−1 = 2−1 = 1

2 . (106)

Next we compute

Ξ′
2 ξ2 = (−1, 0, 1)




− 15√
127
5√
127
2√
127


 = 15√

127
+ 2√

127
= 17√

127
≈ 1.51. (107)

Substituting (107) and (106) into (105) yields

β2,1 = (Ξ′
2 Ξ2)

−1Ξ′
2 ξ2 = 1

2 · 17√
127

= 17
2·
√

127
≈ 0.754.
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Ex. 5.2: Comparing the PLS Model and the LISREL Model

Compare the coefficients of the PLS model from Ex. 5.1 with the LISREL
model from Ex. 4.3. To do this, you need to consider the standardized
coefficients, because the variables in the two models are scaled differently.

For a regression equation

X − µX = γ1 ξ1 + γ2 ξ2 + . . . + γm ξm + δ,

where δ is the error term and γ1, γ2, . . . , γm the coefficients, the
standardized coefficients γ̃j are given by

γ̃j = γj ·
σξj
σX

= γj ·
standard deviation of ξj
standard deviation of X

. (108)

For computing the standardized coefficients, we have to estimate the
standard deviations in (108) by the empirical standard deviations sξj and
sX computed from the data.
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Ex. 5.2: Comparing the PLS Model and the LISREL Model

Solution: For the PLS model (diagram below) we found β2,1 ≈ 0.754. To
standardize β2,1 we need the standard deviations for the final data of ξ1
and ξ2. As ξ1 and ξ2 are standardized we have σξ1 = sξ1 = 1 and
σξ2 = sξ2 = 1, and the standardized coefficient for β2,1 is

β̃2,1 = β2,1 ·
sξ1
sξ2

= β2,1 ≈ 0.745.
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Ex. 5.2: Comparing the PLS Model and the LISREL Model

For the LISREL model (diagram below) we found that γ1,1 = 0.25 = 1/4,
and we computed Var(ξ1) = φ1,1 = 100. Hence the empirical standard
deviation sξ1 = 10. The variance of η1 was no directly computed, but from
(40), (51) and λY

2,1 = 2 we have

Var(η1) =
Cov(Y1,Y2)

λY
2,1

=
12.5

2
= 6.25,

and so sη1 =
√

6.25 = 5/2. Hence the standardized coefficient for γ1,1 is

γ̃1,1 = γ1,1 ·
sξ1
sη1

=
1

4
· 10

5/2
= 1.
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Ex. 5.2: Comparing the PLS Model and the LISREL Model

The standardized coefficients for the path from ξ1 to ξ2 (PLS) and ξ to η1

(LISREL), respectively, in the inner structural model are β̃2,1 ≈ 0.745
(PLS) and γ̃1,1 = 1 (LISREL). So we note the two models give slightly
different results for our example.
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