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General Information on the Course

Format of the Course

We will alternate between introducing the new methods and practicing
them on concrete examples (first by hand, to see how the method works,
and then with the help of SPSS).

Assessment: Take-Home Assignment, Handed Out After the Course

Submission deadline: Monday, June 04, 2012, 4:00 p.m.

Submission by email to me or in hard-copy handed in/sent to me.

Rules of submission: You may collaborate with your colleagues (group
work allowed), but you must prepare your own individual report.

Format of submission: a typeset report or a neatly handwritten one.

For email submission, please email one pdf-file.
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Other Information

Software: SPSS.

Apart from the computers in PC-Lab 3, you can get a free 2-weeks trial
licence from SPSS. If you are an external doctoral student and do not have
a SPSS license, please install the 2-weeks trial license only when you need
it for the take-home assignment.

Help/Support: How to Get Help on the Take-Home Assignment

Contact me by email, phone or in person.

Email: kerstin.hesse@hhl.de

Phone: +49 (0)341 9851-820

Office: HHL Main Building, Room 115A (I am usually there from
9:00 a.m. to 5:00 p.m., but please make an appointment by email.)
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Topic 1: Revision of Background Material

general notation

types of data and measurement scales:

nominal data without order and nominal data with order,
data on an interval scale/metric data without a unique zero point,
data on a ratio scale/metric data with a unique zero point

arithmetic mean, variance and standard deviation (of metric data
describing a feature for a sample of objects)

random variables and probability distributions

expectation value, variance, standard deviation, covariance and
correlation coefficient of random variables

estimating expectation value, variance, standard deviation, covariance
and correlation coefficient of random variables from a sample

hypothesis testing
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General Notation: Scalars and Vectors

Scalar values (real numbers) are denotes by lowercase letters:
x , y , a, b, . . ..

Random variables are denoted by uppercase letters X ,Y ,Z , . . ..

Vectors (of real numbers or random variables) are denoted by
lowercase boldface letters and are by default column vectors
x, y,w, . . .. In x′ the ′ denotes taking the transpose.

x =


x1

x2
...

xN

 = (x1, x2, . . . , xN)′, y =


Y1

Y2
...

Yp

 = (Y1,Y2, . . . ,Yp)
′.

The length of a vector x = (x1, x2, . . . , xN)′ is denoted ‖x‖2 and is

‖x‖2 =
√

x2
1 + x2

2 + . . . + x2
N =

√√√√ N∑
i=1

x2
i =

(
N∑

i=1

x2
i

)1/2

.
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General Notation: Matrices

Matrices are denoted by boldface uppercase letters A,B,X, . . ..

An m × n matrix A has m rows and n columns:

A = (ai ,j)i=1,2,...,m
j=1,2,...,n

=


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
am,1 am,2 . . . am,n

 (1)

The entries of a matrix A are usually denoted by the corresponding
lowercase letter, i.e. ai ,j , with the first index for the row and the
second index for the column (e.g. see (1)).

Occasionally we may also use Ai ,j to refer to the entry in the ith row
and jth column of a matrix A.

We may drop the comma between the indices in ai ,j (i.e. write aij

instead) if there is no ambiguity.
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General Notation: Transpose of a Matrix

For an m × n matrix A (given by (1)), A′ denotes the transpose of
the matrix A which is the n ×m matrix given by

A′ =


a1,1 a2,1 . . . am,1

a1,2 a2,2 . . . am,2
...

...
. . .

...
a1,n a2,n . . . am,n

 . (2)

The entries of the ith row of A become the entries of the ith column
of A′ (indicated in (1) and (2) in violet for the 1st row/column).

Example of a 2× 3 matrix and its transpose:

A =

(
1 2 3
4 5 6

)
, A′ =

 1 4
2 5
3 6

 .

Here the entries of A are a1,1 = 1, a1,2 = 2, a1,3 = 3, a2,1 = 4,
a2,2 = 5 and a2,3 = 6.
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Types of Data and Measurement Scales: Nominal Data

In statistics, we discuss the statistical properties of features of objects.

The objects come from a population, and usually we will inspect a sample
(randomly selected subset) from this population.

The types of data (or measurement scales) below are listed in the order of
increasing properties of the data.

Nominal Data Without Order / Qualitative Data: This is data of the
most general kind, describing a feature (or property) of objects.

Example: color of cars, with the values: red, blue, green, . . .

Nominal Data with Order: This data describes a feature of objects and
is given by numbers that can be meaningfully ordered.

Example: score from a questionnaire, with possible values 1,2,3,4,5.
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Types of Data and Measurement Scales: Metric Data

Metric Data Without a Unique Zero Point / Data on an Interval
Scale: This data describes a feature of objects in terms of numbers that
can be meaningfully ordered. The distances between the different data
values have meaning.

Example: Time measurement according to a calendar; the year zero could
have been defined differently (no unique zero point).

Metric Data With a Unique Zero Point /Data on a Ratio Scale:
This is data describes a feature of objects in terms of numbers that can be
meaningfully ordered. The distances between the different data values
have meaning, and there is a unique zero point.

Example: income, debt, height, weight.

Note: Due to the unique zero point, it makes sense to consider ratios;
e.g. person A has twice the income of person B.
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Arithmetic Mean, Variance and Standard Deviation

We have metric data of a feature x measured for a sample of N objects
from a population: xi = value of the feature at object ei , i = 1, 2, . . . ,N.

Example: gross income per year in 1000 Euros: x1 = 45, x2 = 55, x3 = 50

Arithmetic Mean: x =
1

N

N∑
i=1

xi

Example: x = 1
3(45 + 55 + 50) = 150

3 = 50

Variance: Var(x) = σ2 =
1

N − 1

N∑
i=1

(xi − x)2

Standard Deviation: σ =
√

Var(x)

Example: σ2 = 1
2

[
(45− 50)2 + (50− 50)2 + (55− 50)2

]
= 25, σ = 5

The standard deviation measures the average deviation from the mean.
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Random Variable

Random Variable: A random variable X is a function that maps each
event e (from the space of all events E ) of a probability experiment onto
an outcome of the event, given by a value x = X (e). It is required that
the values X (e) of the events e are determined by chance.

Discrete Random Variable: A random variable is called discrete, if it can
assume only a finite (or infinite but countable) number of values.

Continuous Random Variable: A random variable is called continuous, if
it is metric and if it can assume all real values from an non-empty interval.

Example of a Discrete Random Variable (Throwing the Dice):

probability experiment: throwing the dice

An event e is throwing the dice.

X (e) = number of eyes on the face of the dice (values 1, 2, . . . , 6).
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Example of a Discrete Random Variable

Example (Flipping a Coin Twice):

probability experiment: flipping a coin twice

event: e = result from flipping the coin twice

space of all events: E = {HH,HT ,TH,TT},
where H = heads, T = tails

random variable: X (e) = number of heads, with values in {0, 1, 2}

If we set e1 = HH, e2 = HT , e3 = TH, e4 = TT , then

X (e1) = 2, X (e2) = X (e3) = 1, and X (e4) = 0.

For a perfect coin, the probability P(X = x) to obtain x heads is

P(X = 2) =
1

4
, P(X = 1) =

2

4
=

1

2
, P(X = 0) =

1

4
.
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Example of Continuous Random Variables

Example (Age and Gross Income of a Random Person):

probability experiment: drawing a random person from a sample

event: e = drawing of a person

space of all events: all possible choices of a person

random variables: X (e) = the person’s gross income per year in 1000
Euros, Y (e) = the person’s age

Note: In this example we could also identify the event

e = drawing of a random person

with the person (object) itself and thus consider

e = random person from the population

and define X (e) and Y (e) as properties of the person (object) e:

X (e) = gross income per year of person e, Y (e) = age of person e.
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Probability Distribution of a Discrete Random Variable

Let X be a discrete random variable with values x1, x2, . . . , xi , . . ..

Probability Density: The function

f (xi ) = P(X = xi ) = (probability that X = xi )

is called the probability density of X .

Probability Distribution: The function

F (x) = P(X ≤ x) =
∑
xi≤x

f (xi ) = (probability that X ≤ x)

is called the probability distribution of X .

Ex. 1.1 (Flipping a Coin Twice): For the example of flipping a perfect
coin twice with the random variable X (e) = number of heads, determine
the probability density and probability distribution.
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Example (Gross Income of a Random Person) continued:

What is the probability that a random person e has a yearly gross income
between 50,000 and 60,000 Euros, i.e.

P(50 ≤ X ≤ 60) = P(X ≤ 60)− P(X < 50) =???

The answer depends on the probability distribution f of the random
variable X = income.

If the gross income is normally distributed with mean µ = 40 and standard
deviation σ = 10, then the probability density is

fn(x ; 40, 10) =
1

10
√

2π
exp

(
− 1

2

[
x − 40

10

]2
)

and the probability distribution is

Fn(x ; 40, 10) = P(X ≤ x)︸ ︷︷ ︸
=probability that
X has a value ≤ x

=

∫ x

−∞

1

10
√

2π
exp

(
− 1

2

[
y − 40

10

]2
)

︸ ︷︷ ︸
=fn(y ;40,10)

dy .
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Probability Distribution of a Continuous Random Variable

Let X be a continuous random variable.

Probability Distribution: If X has the probability distribution F (x), then

F (x) = P(X ≤ x) = (probability that X has a value ≤ x)

Probability Density: If X has the probability density f (x) and probability
distribution F (x), then

F (x) =

∫ x

−∞
f (y) dy = (probability that X has a value ≤ x)

and

P(x1 ≤ X ≤ x2) = F (x2)− F (x1) =

∫ x2

x1

f (y) dy

= (probability that x1 ≤ X ≤ x2)
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(Gaussian) Normal Distribution

The (Gaussian) normal distribution has the density function

fn(x ;µ, σ) =
1

σ
√

2π
exp

(
− 1

2

[
x − µ

σ

]2
)

and the probability distribution

Fn(x ;µ, σ) =

∫ x

−∞
fn(y ;µ, σ) dy =

∫ x

−∞

1

σ
√

2π
exp

(
− 1

2

[
y − µ

σ

]2
)

dy .

Two parameters: µ = expectation value, σ= standard deviation.

Fn can be looked up in a table of the normal distribution (see later).
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Density Function of the Normal Distribution
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Expectation Value, Variance of Discrete Random Variable

Let X be a discrete random variable with values x1, x2, . . . , xi , . . ., and
with probability density f .

Expectation Value of X : E(X ) =
∑

i

xi · f (xi )

Variance of X : Var(X ) = E
(
[X − E(x)]2

)
=
∑

i

[
xi − f (xi )

]2 · f (xi )

Standard Deviation of X : σX =
√

Var(X )

Note: The sums are over all values of X , and we have
Var(X ) = E(X 2)− [E(X )]2.

Ex. 1.2 (Flipping a Coin Twice): Compute the expectation value and
the variance of the random variable X = number of heads in the
probability experiment of flipping a perfect coin twice.
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Expectation Value, Variance of Continuous Random Var.

Let X be a continuous random variable with probability distribution F and
probability density f .

Expectation Value of X : E(X ) =

∫ ∞

−∞
x f (x) dx

Variance of X : Var(X ) = E
(
[X − E(X )]2

)
=

∫ ∞

−∞

[
x − E(X )

]2
f (x) dx

Standard Deviation of X : σX =
√

Var(X )

We have: Var(X ) = E
(
[X − E(X )]2

)
= E(X 2)−

[
E(X )

]2
.

Note: The sums in the case of the discrete random variable have become
integrals in the case of the continuous random variable.
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Example: Expectation Value and Variance of Income

If the yearly gross income is normally distributed with mean µ = 40 and
standard deviation σ = 10, then the probability density is

fn(x ; 40, 10) =
1

10
√

2π
exp

(
− 1

2

[
x − 40

10

]2
)

.

Computing the expectation value E(X ) and the Variance Var(X ) we find

E(X ) =

∫ ∞

−∞
x

1

10
√

2π
exp

(
− 1

2

[
x − 40

10

]2
)

dx = 40 = µ,

Var(X ) =

∫ ∞

−∞
(x − 40)2

1

10
√

2π
exp

(
− 1

2

[
x − 40

10

]2
)

dx = 100 = σ2.

Note: If a random variable X follows a normal distribution Fn(x ;µ, σ)
with parameters µ and σ, then always

E(X ) = µ and Var(X ) = E
(
[X − E(x)]2

)
= σ2.
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Centered and Standardized Random Variables

By defining for a random variable X with E(X ) = µX and Var(X ) = σ2
X

W = X − E(X ) = X − µX and Z =
X − E(X )

σX
=

X − µX

σX
(3)

we obtain:

a centered random variable W with E(W ) = 0 and Var(W ) = σ2
X ,

a standardized random variable Z with E(Z ) = 0 and Var(Z ) = 1

We can also convert back to the original variables:

X = W + E(X ) = W + µX and X = σX · Z + E(X ) = σX · Z + µX .
(4)

Statistical tables of probability distributions are often given for the
standardized case µ = E(Z ) = 0 and σ2 = Var(Z ) = 1.
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Standardization of Random Variables I

If our random variable X is not standardized, then we may use (3) to
convert values of X to the standardized values, consult the appropriate
table, and then convert with (4) back to our original variable.

We need to look up how the probability distribution for the standardized
variable and the non-standardized variable are related!

For the normal distribution we have

Fn(x ;µ, σ) = FN

(
x − µ

σ

)
= FN(z) (5)

where FN(z) = Fn(z ; 0, 1) is the standard normal distribution with
expectation value µ = 0 and standard deviation σ = 1.
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Ex. 1.3: Random Variable Gross Income

If the yearly gross income X is normally distributed with mean µ = 40 and
standard deviation σ = 10, then the probability density is

fn(x ; 40, 10) =
1

10
√

2π
exp

(
− 1

2

[
x − 40

10

]2
)

and µ = E(X ) = 40 and Var(X ) = σ2 = 100.

Use (5) and the table for the standard normal distribution FN to determine
the probability that a person has a yearly gross income between 50,000
and 60,000 Euros.
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Standardization of Random Variables II

Standardization is a linear transformation: with µ = E(X ) and
σ = Var(X ),

Z =
X − µ

σ
=

1

σ
· X−µ

σ
= a · X + b with a =

1

σ
, b = −µ

σ
.

Linear transformations do not change the type of a probability distribution,
but they change the expectation value and the variance.

For Z = a · X + b the expectation values and variances of X and Z are
related as follows:

E(Z ) = a · E(X ) + b and Var(Z ) = a2 · Var(X ). (6)

Ex. 1.4 (Standardization): Use (6) to verify that Z = (X − µ)/σ with
µ = E(X ) and σ2 = Var(X ) does satisfy E(Z ) = 0 and Var(Z ) = 1.
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More Probability Distributions

Other Probability Distributions Used in this Course:

t-distribution or Student distribution

χ2-distribution

F -distribution

The ideas and use of these distributions are analogous to the normal
distribution; only the shape is somewhat different.

Probability distributions are characterized by some parameters: expectation
value, standard deviation (or variance) and sometimes degrees of freedom.
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Covariance and Correlation of Random Variables I

Consider the case of two discrete random variables X and Y with a joint
probability density f (x , y) and expectation values E(X ) and E(Y ) and
variances σ2

X = Var(X ) and σ2
Y = Var(Y ).

The covariance of X and Y is computed via

Cov(X ,Y ) = E
(
[X − E(X )] · [Y − E(Y )]

)
=
∑

i

∑
j

[
xi − E(x)

]
·
[
yj − E(y)

]
· f (xi , yj)

where the sums are taken over all values xi of X and all values yj of Y .

Interpretation: f (xi , yj) = probability of the values (xi , yj) for (X ,Y ).

The covariance Cov(X ,Y ) is a measure of the correlation of X and Y .
It measures whether the random variables X and Y depend on each other
in a linear way, e.g. Y = a · X + b.
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Covariance and Correlation of Random Variables II

If X and Y are independent, then the Cov(X ,Y ) = 0.

However, if Cov(X ,Y ) = 0 then we cannot conclude that X and Y are
independent.

Correlation can only measure linear relationships between random variables.

Correlations of different random variables are hard to compare as they
depend on the scale of the variables. A scale-free (and thus comparable)
measure is the correlation coefficient

%(X ,Y ) =
Cov(X ,Y )

σX σY
= E

(
[X − E(X )]

σX︸ ︷︷ ︸
=ZX

· [Y − E(Y )]

σY︸ ︷︷ ︸
=ZY

)
= Cov(ZX ,ZY )

We note that %(X ,Y ) is just the covariance Cov(ZX ,ZY ) of the
corresponding standardized variables ZX and ZY .
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Covariance and Correlation of Random Variables III

Ex. 1.5 (Flipping a Coin Twice):

Consider a perfect coin, and let
X = first flip of the coin,
Y = second flip of the coin,
with the possible events (for both X and Y ): 1 = heads, 0 = tails.

Let the joint probability density be given by f (x , y) = 1/4.

Do you expect that the result of the first flip of the coin has any influence
on the result of the second flip of the coin and vice versa?

What do you conclude about the covariance Cov(X ,Y ) of X and Y ?

Compute the covariance Cov(X ,Y ) of X and Y .

Covariance of Continuous Random Variables:
This can be defined analogously using integrals instead of the sums.
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Estimating Parameters of a Random Var. from a Sample

In practice, a random variable X (e.g. income, height, ratings of products)
is not measured on the whole population but on a large sample.

Often we have no a-priori information about the probability distribution of
X or about the expectation value E(X ) and the variance Var(X ) of X .

Aim: Estimate the expectation value, variance and covariance of random
variables from a sample.

Sampling: We draw a sample of N objects ei (e.g. N = 1000 persons) and
measure for each object the random variable X (e.g. the gross income):
This gives values x1, x2, . . . , xN for X . (xi = value of X for object ei )

Let Y be a second random variable (e.g. spending on foods) that is
measured on the same N objects ei of the sample drawn for measuring X :
This gives values y1, y2, . . . , yN for Y . (yi = value of Y for object ei )
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Estimating Expectation Value and Variance from a Sample

Expectation Value: As the expectation value µ = E(X ) is the average
value expected for X , it is estimated by the arithmetic mean of X in the
sample:

µ̂ = x =
1

N

N∑
i=1

xi (e.g. average gross income in the sample)

Variance: As the variance Var(X ) is the squared average deviation from
E(X ), it is estimated by:

σ̂X
2 =

1

N − 1

N∑
i=1

(xi − x)2
(

e.g. squared mean deviation from the
average gross income in the sample

)
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Estimating Covariance & Correlation Coeff. from a Sample

Covariance: The covariance Cov(X ,Y ) of X and Y is estimated by:

Ĉov(X ,Y ) =
1

N − 1

N∑
i=1

(xi − x) (yi − y)

Ĉov(X ,Y ) is an indicator for the strength of the correlation of X and Y .

Correlation Coefficient: The correlation coefficient %(X ,Y ) of X and Y
is estimated by:

ρ̂(X ,Y ) =
Ĉov(X ,Y )

σ̂x σ̂Y

It is a scale-free measure for the strength of the correlation of X and Y .
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Ex. 1.6: Estimate Parameters of Random Var. from Sample

The gross income per month (= X ) and the spending on foods per month
(= Y ) are sampled for N = 4 persons e1, e2, e3, e4:

Person X (in Euros) Y (in Euros)

e1 6000 300

e2 5000 250

e3 6500 400

e4 4500 250

means

Estimate the expectation values E(X ), E(Y ), the variances Var(X ),
Var(Y ), the covariance Cov(X ,Y ) and the correlation coefficient %(X ,Y ).
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Comments: Estimating Parameters of a Random Variable

Notation:

The estimates of the expectation value, the variance, . . . are also
called the empirical expectation value, the empirical variance, . . . .

The ̂ over a parameter, e.g. in σ̂X , indicates an estimator of the
parameter without the .̂ So σ̂X denotes an estimator of σX .

Query: Comparing the formulas for expectation value, variance and
covariance with the formulas for their estimators, why does the probability
density not occur in the formulas for the estimators?

For a large sample, values of the random variable with a higher probability
will be drawn more often. Thus they automatically occur with
approximately the correct frequency in the sample.
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Geometric Interpretation of the Covariance and Correlation

Let x = (x1, x2, . . . , xN)′ (data for X ), y = (y1, y2, . . . , yN)′ (data for Y ),
x = (x , x , . . . , x)′ and y = (y , y , . . . , y)′ (N-vectors with mean as entries).

Ĉov(X ,Y ) =
1

N − 1
·(x− x)′ (y − y)︸ ︷︷ ︸
= scalar product

=
1

N − 1
·‖x− x‖2 · ‖y − y‖2 · cos(α)︸ ︷︷ ︸

= scalar product

,

where α is the angle between the vectors (x− x) and (y − y).

σ̂X =
1√

N − 1
· ‖x− x‖2 and σ̂Y =

1√
N − 1

· ‖y − y‖2,

%̂(X ,Y ) =
Ĉov(X ,Y )

σ̂X σ̂Y
=

1
N−1 · (x− x)′ (y − y)

1√
N−1
· ‖y − y‖2 · 1√

N−1
· ‖x− x‖2

= cos(α).

%̂(X ,Y ) = cos(α) can only assume values in the interval [−1, 1].
%̂(X ,Y ) is zero if (x− x)′ and (y − y)′ are perpendicular,
and |%̂(X ,Y )| is 1 if the vectors are parallel or antiparallel.
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Illustration of the Geometric Interpretation of Ĉov(X , Y )

(N − 1) · Ĉov(X ,Y )

= (x− x)′ (y − y)

= ‖x− x‖2 · ‖y − y‖2 · cos(α)

%̂(X ,Y ) = cos(α)
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Idea of Hypothesis Testing

Hypothesis testing is about verifying whether statistical results are
significant or not, i.e. whether they are likely to result from a true
trend or whether they are due to random variations.

Hypothesis testing does not give a definite answer but rather gives an
answer with a specified margin of error.

Hypothesis testing uses information about the probability distribution
of the investigated quantity.

Application Areas of Hypothesis Testing:

Are any of the coefficients in a (multilinear) regression significantly
different from zero?

Comparison of means (see example and later ANOVA).
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Example: Hypothesis Testing I

In a geese farm, the average weight of a goose in 2010 was µ1 = 5123 g
with a standard deviation of σ1 = 196 g.

At the beginning of 2011, the fodder for fattening the geese was changed.
A sample of n = 101 geese in 2011 (feed with the new fodder) yielded an
average weight of x = 5151 g.

Query: Has the new geese fodder changed the average weight µ2 in 2011?
Give an answer with a significance level of α = 0.05.

1 Formulate the Null Hypothesis and Alternative Hypothesis:

H0 : µ2 = µ1 = 5123 g

(
The average weight of the geese

in both years is the same.

)

H1 : µ2 6= µ1 = 5123 g

(
The average weight of the geese
in both years is not the same.

)
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Example: Hypothesis Testing II

2 Find the Test Variable and its Distribution: Our random variable is the
mean value X (average weight) of the geese in the sample from 2011.

If the null hypothesis is true, then the expectation value for X is

E(X ) = µ1 = 5123 g

and its standard deviation is

σX ≈
σ1√
n

=
196 g√

101
= 19.50 g.

(The formula σX ≈ σ1/
√

n for the standard deviation of X will not be
explained here.)

As test variable we consider the standardized variable

Z =
X − E(X )

σX

=
X − 5123 g

19.50 g
,

which (as can be shown) follows a standard normal distribution.
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Example: Hypothesis Testing III

3 Determination of the Critical Area (for Acceptance of the Null
Hypothesis): Here we have a double sided test, and for α = 0.05 we
find (from the table of fN(z) = fn(z ; 0, 1)) the two critical values

z` = −1.96 and zu = +1, 96.

Hence if
z < z` = −1.96 or z > zu = +1, 96

we reject the null hypothesis and if

−1.96 = z` ≤ z ≤ zu = +1, 96

we accept the null hypothesis.
4 Computation of the Value of the Test Variable:

z =
µ2 − E(X )

σX

=
5151 g − 5123 g

19.50 g
=

28

19.50
≈ 1.44.
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Example: Hypothesis Testing IV

5 Decision about the Hypotheses and Interpretation: As

−1.96 = zl ≤ 1.44 ≤ zu = +1, 96

we cannot reject the null hypothesis.

The difference of 28 g between the average weight of the geese in the
sample in 2011 and the average weight µ1 of the geese in 2012 is not
statistically significant (i.e. it is likely to be caused by random
variations).

Statistical Interpretation: The chance to reject the null hypothesis,
when it is in fact true, is α = 0.05 (or 5%).
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Example: Area Under the Probability Distribution

As the critical values z = ±1.96 lie in the area in red, we have to accept
the null hypothesis. This is also confirmed by the p-value which is

p = 0.1498 > 0.05 = α,

also telling us that we must accept the null hypothesis.
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Ex. 1.7: Hypothesis Testing

In our geese farm not only the average weight but the variance of the
geese was sampled in 2010 and 2011, in order to determine whether the
geese fodder (which was changed at the start of 2011) influenced the
variance of the weight.

For a sample of n1 = n2 = 101 geese in each year we found the variance
s2
1 = 1962 g2 (2010) and s2

2 = 1532 g2 (2011). The quotient

F =
S2

1/σ2
1

S2
2/σ2

2

,

where S2
1 and S2

2 are the random variables for the sample variances and σ2
1

and σ2
2 are the variances in the population in 2010 and 2011, follows an

F -distribution with ν1 = n1 − 1 and ν2 = n2 − 1 degrees of freedom.

Use this information to test the null hypothesis that the variances of the
weight are the same with a significance level of α = 0.05 against the
alternative hypothesis that σ2

1 > σ2
2.
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Topic 2: Analysis of Variance

2.1 One-Way Analysis of Variance (1-Way ANOVA)

definition and explanation of the idea of 1-way ANOVA, examples

mathematical model of 1-way ANOVA

hypothesis testing to answer the question posed by 1-way ANOVA

examples and exercises

2.2 Two-Way Analysis of Variance (2-Way ANOVA)

definition and explanation of the idea of 2-way ANOVA, examples

mathematical model of 2-way ANOVA with interaction

hypothesis testing to answer the questions posed by 2-way ANOVA

examples and exercises
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Example of 1-Way ANOVA: Student Learning

Does the academic success of economics students depend on the teaching
method?

Independent qualitative variable/factor A: method of teaching with three
factor levels:

A1 = traditional teaching,

A2 = distance learning,

A3 = blended learning.

3 subpopulations/groups of economics students:

P1 = students taught with traditional teaching (= A1),

P2 = students taught with distance learning (= A2),

P3 = students taught with blended learning (= A3).

Dependent metric variable Y : academic success (measured by the mark),
i.e. we propose a function/relationship f : A→ Y , f (Ai ) = Yi .
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One-Way Analysis of Variance Explained

Consider a population P and a qualitative independent variable (called a
factor) A with values (called factor levels) A1,A2, . . . ,Ar defined on P.

The factor A allows us to subdivide the population P into
subpopulations/groups P1,P2, . . . ,Pr , where

Pi = set of all objects from P for which A has the value Ai .

Let Y be a metric variable that is defined on the population P.

Research Question: For an object ei from P, does its value Ai for A
affect its value Yi for Y ? In other words, does the metric variable Y
depend on the factor A?

Example (Student Learning): A = teaching method, Y = mark
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Exercises: One-Way ANOVA Problems

Ex. 2.1 (Effect of Different Fertilizers on the Crop Yield):

The effect of four different types of fertilizer (A1,A2,A3 and A4) on the
crop yield shall be investigated.

Describe this problem in terms of one-way ANOVA.

Given 40 fields of equal size and soil quality, suggest a way of
investigating this problem empirically.

Ex. 2.2 (Effect of Shelf Placement on Margarine Sales):

How does the shelf placement (options: A1 = normal shelf or
A2 = cooling shelf) effect the sales of margarine?

Describe this problem in terms of one-way ANOVA.

Suggest a way to investigate this problem empirically.
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One-Way ANOVA: Mathematical Model – Setup

Setup and Assumptions:

Let A be a factor with levels A1,A2, . . . ,Ar defined on a population P.

Let Pi denote the subpopulation of all objects from P for which A has
the value Ai .

Let Y be a metric random variable that can be sampled in P.

Assumptions: Y is normally distributed in P and in each
subpopulation Pi , and Y has the same variance in P1,P2, . . . ,Pr .

Example Student Learning:

factor: A = teaching method

3 populations: P1 = students taught with traditional teaching (= A1),
P2 = students taught with distance learning (= A2),
P3 = students taught with blended learning (= A3).

metric variable: Y = mark (of the student)
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One-Way ANOVA: Mathematical Model – Means

One-way ANOVA is used to investigate whether Y depends on A,
i.e. whether the factor levels Ai have an effect on the values of Y .

We investigate this by determining whether the arithmetic means of Y in
the subpopulations Pi differ significantly.

Grand Mean of Y , Means of Y for the Different Subpopulations:

µ = grand (arithmetic) mean of Y in the total population P,

µi = (arithmetic) mean of Y in the population Pi , i = 1, 2, . . . , r ,

αi = µi − µ = effect of Ai on Y , i = 1, 2, . . . , r .

Example Student Learning:

grand mean: µ = average mark of the economics students

means in the subpopulations: µi = average mark of students taught
with teaching method Ai

αi = µi − µ = effect attributed solely to teaching method Ai
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Comparison of Means via Hypothesis Testing

Comparison of Means in the Different Populations:
If the means µi = µ + αi , i = 1, 2, . . . , r , are all equal, then

µ = µi = µ + αi ⇔ αi = 0, i = 1, 2, . . . , r .

To investigate whether the means differ significantly (i.e. differences in the
values are not solely due to random errors) we use hypothesis testing.

Hypothesis Testing: We are testing the null hypothesis

H0: α1 = α2 = . . . = αr = 0 (or equivalently µ1 = µ2 = . . . = µr = µ).

against the alternative hypothesis

H1: For at least one subpopulation Pi , αi 6= 0 ( or equivalently µi 6= µ).
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Example: Student Learning

Factor: A = method of teaching; metric variable: Y = mark (of student).

µ = average mark (among all students),

µi = average mark of students taught with method Ai ,

αi = µi − µ = effect attributed solely to teaching method Ai .

If the teaching method has no effect on the academic success, then
µ1 = µ2 = µ3 = µ or equivalently α1 = α2 = α3 = 0.

H0: µ1 = µ2 = µ3 = µ (or equivalently α1 = α2 = α3 = 0), i.e. the
average mark does not depend on the teaching method.

H1: µi 6= µ or equivalently αi 6= 0 for (at least) one teaching method Ai ,
i.e. the average mark is not the same for each teaching method (and
hence depends on the teaching method).
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Sampling in the Different Subpopulations

Take a sample of size ni from population Pi and measure Y :
measurements yi1, yi2, . . . , yini

of Y (1st index for population Pi ,
2nd index for number in sample). From our model,

yik = µ + αi + εik , k = 1, 2, . . . , ni , where:

εik is a random error due to the variation of Y within Pi .

The εik are all normally distributed with mean value zero and the
same variance σ2.

Note: The expectation value for sampling Y in Pi is µ + αi .

Example (Student Learning): yi1, yi2, . . . , yi100 are the marks of 100
students taught with teaching method Ai , i = 1, 2, 3.

yik︸︷︷︸
mark of student k

taught with Ai

= µ︸︷︷︸
average
mark

+ αi︸︷︷︸
effect on mark from
teaching method Ai

+ εik︸︷︷︸
random
error
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Sample is Used to Estimate the Means

The grand mean µ and the mean µi within the subpopulation Pi are
estimated via the sample means: with N =

∑r
i=1 ni ,

y =
1

N

r∑
i=1

ni∑
k=1

yik︸ ︷︷ ︸
estimator of µ

and y i =
1

ni

ni∑
k=1

yik︸ ︷︷ ︸
estimator of µi

, i = 1, 2, . . . , r .

α̂i = y i − y gives then an estimator for αi .

The random error terms εik can then be estimated via

εik = yik − y i = yik − y − (y i − y)︸ ︷︷ ︸
= bαi

= yik − (y + α̂i )

Example (Students Learning): y = estimator for the average mark µ,
y i = estimator for the average mark µi with teaching method Ai ,
α̂i = y i − y = estimator for the effect αi of teaching method Ai
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Decomposition of the Sum of Squares (SST)

r∑
i=1

ni∑
k=1

( yik − y︸ ︷︷ ︸
= bαi+εik

)2

︸ ︷︷ ︸
= SST variation
from grand mean

=
r∑

i=1

ni · ( y i − y︸ ︷︷ ︸
= bαi

)2

︸ ︷︷ ︸
= SSA variation
between groups

+
r∑

i=1

ni∑
k=1

( yik − y i︸ ︷︷ ︸
=εik

)2

︸ ︷︷ ︸
= SSE variation
within groups

Note: SSE collects the random errors due to the variation in each group.

Example (Students Learning):

SST = (squared) variation from the average mark among all students

SSA = (squared) variation of the average marks for the different
teaching methods from the overall average mark

SSE = sum of the (squared) variations within the groups taught with
one teaching method from the average mark in that group
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Mean Square Variations

We divide each sum of squares by its degrees of freedom (df):
dfSST = N − 1, dfSSA = r − 1, dfSSE = N − r where N =

∑r
i=1 ni .

MST =
SST

N − 1
=

1

N − 1

r∑
i=1

ni∑
k=1

(yik − y)2,

MSA =
SSA

r − 1
=

1

r − 1

r∑
i=1

ni · (y i − y)2,

MSE =
SSE

N − r
=

1

N − r

r∑
i=1

ni∑
k=1

(yik − y i )
2.

Motivation: If the means µi in the subpopulations are not all equal,

then the ratio Fr−1,N−r =
MSA

MSE
=

SSA/(r − 1)

SSE/(N − r)
should be large.
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Example: Student Learning – Mean Square Variations

Student subpopulation Pi corresponds to teaching method Ai , i = 1, 2, 3.

The sample size in Pi is ni = 100.

Overall sample (from all students) has size N = n1 + n2 + n3 = 300

dfSST = N − 1 = 299, dfSSA = r − 1 = 2, dfSSE = N − r = 297

MST = SST/(N − 1) = squared average mark variation (from the
overall average mark) among the students in the overall sample

MSA = SSA/(p − 1) = squared average variation of the average
marks for the teaching methods from the overall average mark

MSE = SSE/(N − p) = squared average variation of the marks from
the average marks within the groups/squared average random error

If the teaching method affects the mark then
MSA

MSE
should be large.
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Hypothesis Test for One-Way Analysis of Variance

The null hypothesis

H0: µ1 = µ2 = . . . = µr = µ (or equivalently α1 = α2 = . . . = αr = 0)

is tested under the following assumptions:

(i) The variances of Y in the populations P1,P2, . . . ,Pr are equal.

(ii) Y is normally distributed within each subpopulation Pi and in P.

Then the random variable

F = Fr−1,N−r =
MSA

MSE
=

SSA/(r − 1)

SSE/(N − r)

follows an F distribution with numerator degrees of freedom df = r − 1
and denominator degrees of freedom df = N − r .

We reject H0 with significance level α if the value f = MSA
MSE computed for

F satisfies f > fr−1,N−r ,α, where fr−1,N−r ,α is the number for which

(Probability for F > fr−1,N−r ,α) = P(F > fr−1,N−r ,α) = α.
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1-Way ANOVA Table

For computing a 1-way analysis of variance (ANOVA) it is useful to employ
a 1-way ANOVA table to systematically work out the required values:

Source of
Variation

Degrees of
Freedom (df)

Sum of
Squares

Mean Sum
of Squares

F

Between Groups r − 1 SSA MSA = SSA
r−1

MSA
MSE

Within Groups N − r SSE MSE = SSE
N−r

Total N − 1 SST

We will now perform a 1-way ANOVA for an example.
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Ex. 2.3: Effect of Teaching Method on Student Marks

A sample of 4 students is taken from each subpopulation Pi , where
Pi = subpopulation taught with teaching method Ai , and where
A1 = traditional teaching, A2 = distance learning, A3 = blended learning.

The random variable Y = mark (of the student) is measured for each
sample, giving the data in the table below.

A1 A2 A3

1 70 57 88

2 80 54 82

3 75 46 90

4 75 43 80

sum

y i = sum
ni

Perform a 1-way ANOVA for this data:

Compute the means.

Then compute the sums of squares and
the mean square deviations.

Finally use hypothesis testing with a
significance level of α = 0.05 (and
α = 0.01) to find whether the teaching
method has any effect on the marks.
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Example: Crop Yield Depending on Soil Quality, Fertilizer

Does the crop yield depend on the soil quality and/or the method of
fertilization?

The population P consists of all fields.

factor A: soil quality with factor levels given by soil types A1,A2,A3

factor B: method of fertilization with factor levels given by fertilizers
B1,B2, . . . ,B4

We observe that there are 12 different combinations Ai × Bj ,
i = 1, 2, 3, j = 1, 2, 3, 4, of soil type Ai and fertilizer Bj .

metric variable Y : crop yield Y measured in tons of crop per km2

We can measure Y in the following subpopulations:

Pi · = all fields having soil type Ai (no assumption on fertilizer),

P·j = all fields fertilized with fertilizer Bj (no assumption on soil type),

Pij = all fields having soil type Ai and being fertilized with fertilizer Bj
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Idea of Two-Way/Two-Factor Analysis I

Consider two factors (independent qualitative variables) A and B, defined
on a population P, with factor levels A1,A2, . . . ,Ar and B1,B2, . . . ,Bq.

The levels of the factors A and B divide the population P into groups:

Pi · = elements for which A has the factor level Ai ,

P·j = elements for which B has the factor level Bj ,

Pij = elements for which A and B have the factor levels Ai and Bj ,
denoted as Ai × Bj .

Example (Crop Yield Depending on Soil Quality and Fertilizer):

population: P = all fields,

factors: A = soil quality, B = method of fertilization,

subpopulations: Pi · = fields with soil type Ai ,
P·j = fields fertilized with fertilizer Bj ,
Pij = fields with soil type Ai and fertilized with fertilizer Bj .
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Idea of Two-Way/Two-Factor Analysis II

Consider a metric variable Y defined on a population P.

We want to investigate whether Y depends on A and B and possibly on
the ‘interaction’ A× B (‘interaction’ = particular combination).

The two-way/two-factor analysis (2-way ANOVA) considers the following
arithmetic means of Y :

µ = grand mean of Y in the whole population P

µi · = mean of Y in the subset Pi · (elements with factor level Ai ),

µ·j = mean of Y in the subset P·j (elements with factor level Bj),

µij = mean of Y in the subset Pij (elements with factor levels Ai×Bj),

The 2-way ANOVA investigates whether:

µi · depends on Ai ,

µ·j depends on Bj ,

µij depends on Ai , Bj and the ‘interaction’ Ai × Bj
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Example: Crop Yield Depending on Soil Quality, Fertilizer

metric variable: Y = crop yield measured in tons of crop per km2

The various (arithmetic) means are:

µ = average crop yield in the population P of all fields

µi · = average crop yield for all fields with soil type Ai

µ·j = average crop yield for all fields fertilized with Bj

µij = average crop yield for all fields with soil type Ai and fertilizer Bj

Research Questions:

Does µi · depend on the soil type Ai?

Does µ·j depend on the fertilizer Bj?

Does µij depend on the soil type Ai , the fertilizer Bj and the
‘interaction’ (i.e. the particular combination of soil type and fertilizer)
Ai × Bj?

Dr. Kerstin Hesse (HHL) Methods of Multivariate Statistics HHL, May 4-5, 2012 70 / 148



Two-Way ANOVA: Mathematical Model I – Setup

population P of objects

two factors/independent qualitative variables on the population P:
factor A with factor levels A1,A2, . . . ,Ar

factor B with factor levels B1,B2, . . . ,Bq

subpopulations: Pi · = elements for which A has the factor level Ai ,
P·j = elements for which B has the factor level Bj ,
Pij = elements for which A and B have the factor levels Ai × Bj .

Y = metric random variable that we expect to depend on the factors
A and B and possibly on their ‘interaction’ A× B

Assumptions:

Y is normally distributed with the same variance σ2 in P and in each
of the subsets Pi ·, P·j and Pij .

The factors A and B and the ‘interaction’ A× B are independent
qualitative variables. Hence they are not correlated.
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Two-Way ANOVA: Mathematical Model II – Means

Research Question: Does Y depend on the factors A and/or B and
possibly their ‘interaction’ A× B?

Grand Mean of Y , Means of Y in the Different Subpopulations:

µ = grand mean of Y for the whole population P

µi · = mean of Y on the subset Pi · of objects with factor level Ai

µ·j = mean of Y on the subset P·j of objects with factor level Bj

µij = mean of Y on the subset Pij of objects with factor levels Ai ×Bj

Approach: If Y does depend on A and/or B and possibly their
‘interaction’ A× B, then the means above should not all be the same.

We will postulate a model for the different means, and estimate the
variables in the model from sampled data.
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Two-Way ANOVA: Mathematical Model III – Model

The two-way analysis of variance (2-way ANOVA) postulates that

µij︸︷︷︸
mean on

populationPij

withAi andBj

= µ︸︷︷︸
grand
mean

+ αi︸︷︷︸
effect ofAi

+ βj︸︷︷︸
effect ofBj

+ γij︸︷︷︸
effect of the
interaction
ofAi andBj

where: effect of Ai : αi = µi · − µ from µi · = µ + αi

effect of Bj : βj = µ·j − µ from µ·j = µ + βj

effect from the
interaction of Ai

and Bj :

γij = µij − µ− αi − βj

= µij − µ− (µi · − µ)− (µ·j − µ)

= µij − µi · − µ·j + µ

Note: If the factors A and B do not interact, then we set γij = 0 and then
perform a 2-way ANOVA without interaction (→ textbooks).
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Example: Crop Yield Depending on Soil Quality, Fertilizer

Model: average crop yield of a field with soil quality Ai and fertilizer Bj

µij︸︷︷︸
average crop yield

for soil type Aj

and fertilizerBj

= µ︸︷︷︸
grand mean:

average crop yield

+ αi︸︷︷︸
effect of

soil typeAi
on crop yield

+ βj︸︷︷︸
effect of

fertilizerBj

on crop yield

+ γij︸︷︷︸
effect of the
interaction
of soil Ai

and fertilizerBj

effect of soil type Ai : αi = µi · − µ

effect of fertilizer Bj : βj = µ·j − µ

effect of ‘interaction’ Ai × Bj of soil type Ai and fertilizer Bj :
γij = µij − µ− αi − βj

If the crop yield does not depend on the soil type and the fertilizer, then:

αi = 0, βj = 0 and γij = 0 for i = 1, 2, . . . , r and j = 1, 2, . . . , q.

In this case µij = µi · = µ·j = µ for i = 1, 2, . . . , r and j = 1, 2, . . . , q,
i.e. the average crop yield is the same in all subpopulations.
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Two-Way ANOVA: Hypothesis Testing

The null hypotheses H0 are tested against their alternative hypotheses H1.

(i) Hypotheses About Factor A:

HA
0 : α1 = α2 = . . . = αr = 0 (or equiv. µ1· = µ2· = . . . = µr ·).

HA
1 : For at least one factor level Ai we have αi 6= 0 (or equiv.

µi · 6= µk· for at least one pair i and k).

(ii) Hypotheses About Factor B:

HB
0 : β1 = β2 = . . . = βq = 0 (or equiv. µ·1 = µ·2 = . . . = µ·q).

HB
1 : For at least one factor level Bj we have βj 6= 0 (or equiv.

µ·j 6= µ·k for at least one pair j and k).

(iii) Hypotheses About the Interaction A× B:

HA×B
0 : γ1,1 = γ1,2 = . . . = γr ,q−1 = γr ,q = 0.

HA×B
1 : For at least one combination Ai × Bj of factor levels γij 6= 0.

Dr. Kerstin Hesse (HHL) Methods of Multivariate Statistics HHL, May 4-5, 2012 75 / 148



Example: Crop Yield Depending on Soil Quality, Fertilizer

What do the hypotheses say for our example?

(i) Hypotheses About Factor A:

HA
0 : The crop yield does not depend on the soil type.

HA
1 : The crop yield does depend on the soil type.

(ii) Hypotheses About Factor B:

HB
0 : The crop yield does not depend on the fertilizer.

HB
1 : The crop yield does depend on the type of fertilizer used.

(iii) Hypotheses About the Interaction A× B:

HA×B
0 : There is no ‘interaction’ between the soil type and fertilizer.

HA×B
1 : There is an ‘interaction’ for at least one soil type Ai and one

fertilizer Bj .
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Sampling Y to Estimate the Means from Empirical Data

In each subpopulation Pi j , i.e. among the objects with the combination of
factor levels Ai × Bj , we we take a sample of size nij and measure Y :

yi jk , k = 1, 2, . . . , nij︸ ︷︷ ︸
nij measurements of Y in Pij

 i = index for factor level Ai

j = index for factor level Bj

k = index for number in sample



Orthogonal Two-Way Analysis of Variance:
We only consider the case of the orthogonal two-way analysis of variance
(orthogonal 2-way ANOVA), where all samples are of the same size:

n1,1 = n1,2 = . . . = nr ,q−1 = nr ,q = n.

Example (Crop Yield Depending on Soil Quality and Fertilizer):

yi jk = crop yield of kth field in sample with soil type Ai and fertilizer Bj
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Model for the Sampled Data

yi jk = µi j︸︷︷︸
mean in

populationPij

withAi andBj

+ εijk︸︷︷︸
random
error

= µ︸︷︷︸
grand
mean

+ αi︸︷︷︸
effect ofAi

+ βj︸︷︷︸
effect ofBj

+ γij︸︷︷︸
effect of the
interaction
ofAi andBj

+ εijk︸︷︷︸
random
error

Assumption: The random error terms εijk are all normally distributed with
mean value zero and the same variance.

Example (Crop Yield Depending on Soil Quality and Fertilizer):

yi jk = µi j︸︷︷︸
average crop yield

for soil type Ai
and fertilizerBj

+ εijk︸︷︷︸
random
error

= µ︸︷︷︸
grand mean:

average crop yield

+ αi︸︷︷︸
effect of

soil typeAi
on crop yield

+ βj︸︷︷︸
effect of

fertilizerBj

on crop yield

+ γij︸︷︷︸
effect of the
interaction

of soil typeAi
and fertilizer Bj

+ εijk︸︷︷︸
random
error
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Estimating the Means from the Empirical Data I

Size of the overall sample in the population P: N =
r∑

i=1

q∑
j=1

nij︸︷︷︸
=n

= r · q · n

The grand mean µ of Y in P is estimated by:

y =
1

N

r∑
i=1

q∑
j=1

n∑
k=1

yijk =
1

N

r∑
i=1︸︷︷︸

sum over
factor levels

Ai ofA

q∑
j=1︸︷︷︸

sum over
factor levels

Bj ofB

n∑
k=1︸︷︷︸

sum over
objects in
sample
fromPij

yijk .

The mean µi · of Y in Pi · (= objects with factor level Ai ) is estimated by:

y i · =
1

n · q

q∑
j=1

n∑
k=1

yijk
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Estimating the Means from the Empirical Data II

The mean µ·j of Y in P·j (= objects with factor level Bj) is estimated by:

y ·j =
1

n · r

r∑
i=1

n∑
k=1

yijk

The mean µij of Y in Pij (= objects with factor level combination
Ai × Bj) is estimated by:

y ij =
1

n

n∑
k=1

yijk

The effects αi , βj , γij of Ai , Bj , Ai × Bj , respectively, are estimated by:

α̂i = y i · − y , β̂j = y ·j − y , γ̂ij = y ij − y i · − y ·j + y .
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Decomposition of the Sum of Squares (SST)

The variation from the grand mean can be decomposed as follows

SST =
r∑

i=1

q∑
j=1

n∑
k=1

( yijk − y︸ ︷︷ ︸
= bαi+ bβj+cγij+εijk

)2 = SSA + SSB + SSAB + SSE

into the variations between the groups for the factor levels of A or of B

SSA = n · q
r∑

i=1

( y i · − y︸ ︷︷ ︸
= bαi

)2 and SSB = n · r
q∑

j=1

( y ·j − y︸ ︷︷ ︸
= bβj

)2,

the variations between the groups for the interaction levels of A× B

SSAB = n
r∑

i=1

q∑
j=1

( y ij − y i · − y ·j + y︸ ︷︷ ︸
= cγij

)2

and the variation within the groups due to random error

SSE =
r∑

i=1

q∑
j=1

n∑
k=1

( yijk − y ij︸ ︷︷ ︸
= εijk

)2.
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Example: Crop Yield Depending on Soil Quality, Fertilizer

In our example: r = 3 soil types Ai and q = 4 types of fertilizer Bj

SST =
3∑

i=1

4∑
j=1

n∑
k=1︸ ︷︷ ︸

sum over the soil types Ai ,
sum over the types of fertilizer Bj ,

and sum over the fields in each sample

(
yi jk − y︸ ︷︷ ︸

difference in crop yield for
kth field in Pi j from the

average crop yield y

)2

SSA = n · 4︸︷︷︸
(size n of sample)
× (number of the

fertilizers Bj )

3∑
i=1︸︷︷︸

sum over the
soil types Ai

(
y i · − y︸ ︷︷ ︸

difference in the average of
the crop yield for fields with

soil type Ai from the
average crop yield y

)2

Ex. 2.4: Interpret the other sums for our example.
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Mean Square (MS) Variations and 2-Way ANOVA Table

Mean square variations are computed with an ANOVA table: N = r · q · n

Source Sum of Degrees of Mean Square Variations
Squares Freedom (df)

Factor A SSA r − 1 MSA = SSA
r−1

Factor B SSB q − 1 MSB = SSB
q−1

A× B SSAB (r − 1) · (q − 1) MSAB = SSAB
(r−1)·(q−1)

Random error SSE N − r · q MSE = SSE
N−r ·q

Total SST N − 1 MST = SST
N−1
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Example: Crop Yield Depending on Soil Quality, Fertilizer

MST is the (squared) average variation of the crop yield.

MSA is the (squared) average variation of the (average) crop yield for
the different soil types Ai .

MSB is the (squared) average variation of the (average) crop yield for
the different fertilizers Bj :

MSB =
SSB

q − 1
=

n · r
q − 1

q∑
j=1

(
y ·j − y︸ ︷︷ ︸

= bβj =effect
from fertilizerBj

)2

MSAB is the (squared) average ‘interaction’ Ai × Bj of soil type Ai

and fertilizer Bj .

MSE is the (squared) average random variation of the crop yield
within the groups corresponding to soil type Ai and fertilizer Bj .
MSE is the (squared) average random error.
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Hypotheses Testing with the F -Distribution

FA =
MSA

MSE
, FB =

MSB

MSE
, FA×B =

MSAB

MSE
(7)

are random variables following an F -distribution with
(numerator,denominator)-degrees of freedom (r − 1,N − r · q),
(q − 1,N − r · q) and ((r − 1) · (q − 1),N − r · q), respectively.

We denote the numerical values for (7) for our data by fA, fB and fA×B .

Given a significance level α, we reject the null hypothesis HA
0 (HB

0 , HA×B
0 )

if fA > fr−1,N−rq,α (fB > fq−1,N−rq,α, fA×B > f(r−1)(q−1),N−rq,α), where
fr−1,N−rq,α (fq−1,N−rq,α, f(r−1)(q−1),N−rq,α) is the number for which

(Probability for FA > fr−1,N−rq,α) = P(FA > fr−1,N−rq,α) = α(
(Probability for FB > fq−1,N−rq,α) = P(FB > fq−1,N−rq,α) = α,

(Prob. for FA×B > f(r−1)(q−1),N−rq,α) = P(FA×B > f(r−1)(q−1),N−rq,α) = α
)
.
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Ex. 2.5: Crop Yield Depends on Soil Quality, Fertilizer

Does the crop yield (measured in tons per km2) depend on the soil type,
the type of fertilizer and their interaction?

Here we consider 3 soil types A1,A2,A3 and 2 types of fertilizer B1 and
B2. We are given the following data for the crop yield Y :

B1 B2 Means

A1 y1,1,1 = 2, y1,1,2 = 2 y1,2,1 = 3, y1,2,2 = 4

A2 y2,1,1 = 1, y2,1,2 = 2 y2,2,1 = 4, y2,2,2 = 5

A3 y3,1,1 = 3, y3,1,2 = 2 y3,2,1 = 4, y3,2,2 = 4

Means

First complete the table to compute the means y i ·, y ·j and y .
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Ex. 2.5: Crop Yield Depends on Soil Quality, Fertilizer

Now compute the means y ij for the interaction Ai × Bj of the factors A
and B.

B1 B2

A1

A2

A3

Next compute the sums of squares.

Now complete the 2-way ANOVA table shown on the next slide.
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Ex. 2.5: Crop Yield Depends on Soil Quality, Fertilizer

Source Sum of Degrees of Mean Square F -Value
Squares Freedom (df) Variation

Factor A

Factor B

A× B

Error

Total

Finally formulate the three null hypotheses and alternative hypotheses.

Determine with a significance level of α = 0.05 which of the three null
hypotheses can be rejected. Interpret your result!

Dr. Kerstin Hesse (HHL) Methods of Multivariate Statistics HHL, May 4-5, 2012 88 / 148



Methods of Multivariate Statistics

Topic 3: Measuring Distances & Investigating Data

Dr. Kerstin Hesse

Email: kerstin.hesse@hhl.de; Phone: +49 (0)341 9851-820; Office: HHL Main Building, Room 115A

HHL – Leipzig Graduate School of Management, Jahnallee 59, 04109 Leipzig, Germany

Doctoral Program at HHL, May 4-5, 2012

Dr. Kerstin Hesse (HHL) Methods of Multivariate Statistics HHL, May 4-5, 2012 89 / 148



Topic 3: Measuring Distances and Investigating Data

data matrix for m random variables measured on n objects

two points of view of investigating the data to:
1 study the relationships between the random variables
2 study the relationships between the objects

geometric representation of the data

distance functions/metrics:

city block distance
Euclidean distance
Tschbyscheff distance/L∞-norm
Mahalanobis distance

Note: We will need distances and the concepts introduced in this chapter
to understand discriminant analysis and cluster analysis.
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Representation of Data: The Data Matrix

Situation: m metric random variables X1,X2, . . . ,Xm are measured
on n objects e1, e2, . . . , en.

xi j = observed value for jth variable Xj on ith object

The data is represented in the data matrix X in the following way:

X = (xij)i=1,...,n
j=1,...,m

=


x11 x12 · · · x1m

x21 x22
. . . x2m

...
...

. . .
...

xn1 xn2 · · · xnm


← object e1

← object e2

← object en

↑ ↑ ↑
variable X1 X2 Xm

Example: objects: n persons; variables: X1 = height, X2 = weight
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Interpretation of the Data Matrix: Two Points of View

1 The jth column contains the values of Xj for the objects e1, e2, . . . , en:

x·j =


x1j

x2j
...

xnj

 = jth column of X.

If we compare the different columns of X, then we study the
relationships between the different variables X1,X2, . . . ,Xm.

Methods: regression, factor analysis, structural equation modeling.

2 The ith row contains the values of X1,X2, . . . ,Xm for the object ei :

x′i · = (xi1, xi2, · · · , xim) = ith row of X.

If we compare the different rows of X, then we study the relationships
between the different objects e1, e2, . . . , en in our sample.

Methods: discriminant analysis, cluster analysis.
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Standardization of the Data and the Data Matrix

It is often useful to standardize the data:

Standardized Data:

zij =
xij − xj

sj
, where xj =

1

n

n∑
i=1

xij , sj =

√√√√ 1

n − 1

n∑
i=1

(xij − xj)2

The zij , i = 1, 2, . . . , n, have now (arithmetic) mean = 0 and variance = 1.

Standardized Data Matrix:

Z = (zij)i=1,...,n
j=1,...,m

=


z11 z12 · · · z1m

z21 z22
. . . z2m

...
...

. . .
...

zn1 zn2 · · · znm


We have corresponding standardized random variables: Zj = (Xj − µj)/σj

where µj = E(Xj) and σj =
√

Var(Xj).
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Visualization of the Standardized Data – Method 1

We plot the columns z·j of the standardized data matrix
Z in a coordinate system with n perpendicular axes.

z·j =


z1j

z2j
...

znj


The ith axis in the coordinate system corresponds to object ei .

The column vector z·j represents the sampled data for the
standardized variable Zj (from the n objects e1, e2, . . . , en).

From the standardization, the vector z·j has length
√

n − 1.

If the random variables Xj and Xk are strongly positively (negatively)
correlated then the corresponding data vectors we will be almost
parallel (anti-parallel), i.e. their angle is close to 0◦ (180◦).

If Xj and Xk are uncorrelated then the corresponding data vectors will
be almost perpendicular, i.e. their angle is close to 90◦.
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Ex. 3.1: Visualization of Height, Weight, Inseam Length

Visualize the following data with Method 1 and interpret your results.

Person height in cm weight in kg inseam length in cm

e1 180 74 78

e2 160 50 68

e3 170 65 73

Why is the standardization of the variables here particularly useful?
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Visualization of the Standardized Data – Method 2

We plot the rows x′i · of the non-standardized data matrix X in a
coordinate system with m perpendicular axes

x′i · = (xi1, xi2, · · · , xim)

The jth axis in the coordinate system corresponds to the variable Xj .

The row vector x′i · corresponds to the data for object ei (for the
m random variables X1,X2, . . . ,Xm).

If two objects ei and ek are similar, then their points in the coordinate
system will be close together.

We can form groups/clusters of similar objects based on the location in
the coordinate system. → We need to know how we measure distance.

Note: Method 2 leads to discriminant analysis and cluster analysis.
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Ex. 3.2: Height and Weight, Visualization with Method 2

Write down the data matrix and X and visualize the following data with
Method 2. A suitable coordinate system has been provided on the next
slide. Interpret your results.

Person height in cm weight in kg

e1 180 72

e2 181 90

e3 182 71

e4 181 91
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Ex. 3.2: Height and Weight, Visualization with Method 2
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Why Distances/Metrics are Needed

From now on we want to investigate the relationships between the
different objects in our sample.

Each object ei is represented through a row vector x′i · in our
non-standardized data matrix X, giving the values of the random variables
X1,X2, . . . ,Xm for ei .

To investigate the relationships between objects ei and ek we need to
measure ‘how far’ two objects ei and ek are apart. We measure this with
distances.

With the help of distances we can:

classify objects into groups/clusters → cluster analysis

find functions that discriminate between given groups and allows us
to sort new objects into an appropriate group → discriminant analysis
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Example: Euclidean Distance/Metric

x′i · = (xi1, xi2, . . . , xim) ith row of X (values of random variables for ei )

x′k· = (xk1, xk2, . . . , xkm) kth row of X (values of random variables for ek)

The Euclidean distance/metric of object ei and object ek is given by

dik = ‖xi · − xk·‖2 =

√√√√ m∑
j=1

(xij − xkj)2

Ex. 3.3: Compute the Euclidean
distance between the following
persons, based on the given data
of their height and weight. Com-
ment on your results.

Person height (cm) weight (kg)

e1 180 72

e2 181 90

e3 182 71

e4 181 91
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Definition of a Distance (Function)/Metric

The distance dik between object ei and object ek must satisfy the
following conditions:

(i) dik ≥ 0 for all i , k = 1, 2, . . . , n.

(The distance is non-negative.)

(ii) dik = dki for all i , k = 1, 2, . . . , n (symmetry).

(The distance from object ei to object ek is the same as the distance
from object ek to object ei .)

(iii) dii = 0 for all i = 1, 2, . . . , n.

(The distance of an object from itself is zero.)

Example: The Euclidean distance has all these properties.
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City Block Distance and Tschebyscheff Distance

x′i · = (xi1, xi2, . . . , xim) ith row of X (values of random variables for ei )

x′k· = (xk1, xk2, . . . , xkm) kth row of X (values of random variables for ek)

The city block distance (L1-norm) of the objects ei and ek is given by

dik = ‖xi · − xk·‖1 =
m∑

j=1

|xij − xkj |.

The Tschebyscheff distance (L∞-norm) of the objects ei and ek is given by

dik = ‖xi · − xk·‖∞ = max
j=1,2,...,m

|xij − xkj |.

Dr. Kerstin Hesse (HHL) Methods of Multivariate Statistics HHL, May 4-5, 2012 102 / 148



Ex. 3.4: City Block Distance and Tschebyscheff Distance

Compute the city block distance and Tschebyscheff distance between the
following persons, based on the given data of their height and weight.
Comment on your results.

Person height (cm) weight (kg)

e1 180 72

e2 181 90

e3 182 71

e4 181 91
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Visualization of Different Distances

The plot below shows the Euclidean distance, the city block distance and
the Tschebyscheff distance of two objects e1 and e2 for m = 2 random
variables (i.e. 2 coordinate axes).
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Mahalanobis Distance

Let S be the empirical covariance matrix of our data:

S = (sjk) j=1,2,...,m
k=1,2,...,m

with sjk = Ĉov(Xj ,Xk) =
1

n − 1

n∑
i=1

(xij − xj)(xik − xk)︸ ︷︷ ︸
= empirical covariance for the

given data of Xj and Xk

The Mahalanobis distance between object ei and object ek is given by

dik =
√

(xi · − xk·)′ S−1 (xi · − xk·),

where S−1 is the inverse matrix of the empirical covariance matrix S.

Note: This distance it not so easy to visualize. The intuitive idea is that it
is like a ‘deformed’ Euclidean distance: Points with equal distance from a
fixed point do no longer lie on circles but on ellipses. For S = I (identity
matrix, i.e. our data is uncorrelated), we just get the Euclidean distance.
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Topic 4: Discriminant Analysis

Idea of Discriminant Analysis and Approaches:

Setup: We are given g groups of objects and data for a vector
x = (X1,X2, . . . ,Xm)′ of metric random variables for all objects.

Aim: Find discriminant functions that distinguish between the groups.

Maximum Likelihood (ML) approach, if x in the individual groups
follows a multivariate normal distribution (not discussed).

Fisher’s linear discriminant analysis: x = (X1,X2, . . . ,Xm)′ is
transformed into new random variables Yk = a′k x with suitable
vectors ak , k = 1, 2, . . . , r , such that the values of Yk distinguish well
between the g groups.

4.1 Fisher’s Linear Discriminant Analysis for 2 Groups

4.2 Fisher’s Linear Discriminant Analysis for Multiple Groups
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Idea of Fisher’s Linear Discriminant Analysis

Population and its Subgroups

A population has been subdivided into g groups K1,K2, . . . ,Kg .

The vector x = (X1,X2, . . . ,Xm)′ of m metric random variables is
sampled in the subgroups, and its values are assumed to reflect the
classification into groups.

Assumptions on the Random Variables and Their Distributions

The probability distribution of x is of the same type in all groups K`

(e.g. a multivariate normal distribution).

The parameters of the distribution of x may differ in the groups.

Fisher’s linear discriminant analysis requires no knowledge of the type of
the probability distribution of x = (X1,X2, . . . ,Xm)′.
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Fisher’s Linear Discriminant Analysis for 2 Groups

Introduce a new scalar random variable

Y = a′ x = (a1, a2, . . . , am)


X1

X2
...

Xm

 = a1 X1 + a2 X2 + . . . + am Xm

The vector a′ = (a1, a2, . . . , am) is determined such that the values

y = a′ x = a1 x1 + a2 x2 + . . . + am xm

for the objects e with values x = (x1, x2, . . . , xm)′ separate the two
groups optimally.

Normalization of a: ‖a‖22 = a2
1 + a2

2 + . . . + a2
m = 1.
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Geometric Visualization of y = a′ x

y = a′ x = a1 x1 + a2 x2 + . . . + am xm = ‖a‖2︸︷︷︸
=1

‖x‖2 cos(α) = ‖x‖2 cos(α)

where α is the angle between a and x.

y = a′ x is the projection of x onto the straight line with direction a.
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Ex. 4.1: Normal and Overweight Males

Consider the vector of random variables x = (X1,X2)
′, with X1 = height in

cm, X2 = weight in kg. Given the linear function

Y = a′ x with a′ = (2/
√

5,−1/
√

5) ≈ (0.894,−0.447),

compute the values of Y for the data given below. Visualize the sampled
data and the values for Y and also the corresponding means.

Group 1: normal weight males

Person Height Weight Y

e1,1 165 55

e1,2 180 70

e1,3 195 85

Means

Group 2: overweight males

Person height weight Y

e2,1 160 65

e2,2 170 90

e2,3 180 100

Means
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Ex. 4.1: Normal and Overweight Males
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Fisher’s Linear Discriminant Analysis for 2 Groups: Setup

Notation (for 2 or more groups):

group K` contains objects e`1, e`2, . . . , e`n`
with vectors

x`1, x`2, . . . , x`n`
for the values of the random variables

x = (X1,X2, . . . ,Xm)′.

Indices of e`j and x`j : first index ` for the group K`, and
second index j for the number in the sample from group K`

Choosing the vector a:

Consider a function Y = a′ x where a′ = (a1, a2, . . . , am).

y`j = a′ x`j = value for Y for object e`j from group K`

Aim: Choose a such that the values y1j , j = 1, 2, . . . , n1, for the
group K1 are substantially larger (smaller) than the values y2j ,
j = 1, 2, . . . , n2, for the group K2.
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Fisher’s Linear Discriminant Analysis for 2 Groups: Model

Arithmetic Means in the 2 Groups:

x` =
1

n`

n∑̀
j=1

x`j = mean value vector for x in group K`,

y ` =
1

n`

n∑̀
j=1

y`j =
1

n`

n∑̀
j=1

a′ x`j︸ ︷︷ ︸
= a′ 1

n`

Pn`
j=1 x`j

= a′ x` = mean value for Y in group K`.

Choose a, with ‖a‖22 = 1, to maximize Q(a) =
(y1 − y2)

2

SS(Y )1 + SS(Y )2
, where

SS(Y )` =

n∑̀
j=1

(y`j − y `)
2 = sum of squared deviations in group K`.

Motivation: At the maximum the difference of the means y1 − y2 is
large, but the squared deviations SS(Y )1 and SS(Y )2 from the means in
K1 and K2, respectively, are small.
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Rewriting the Numerator and Denominator of Q(a)

The numerator and denominator of Q(a) are functions of a:

y1 − y2 = a′ x1 − a′ x2 = a′ (x1 − x2), SS(Y )1 + SS(Y )2 = a′Wa

with the in-group matrix

W =
2∑

`=1

W` = W1 + W2 with W` =

n∑̀
j=1

(x`j − x`) (x`j − x`)
′

W` is (n` − 1) times the covariance matrix from the data in group K`:

(W`)ik =

n∑̀
j=1

(x`j ,i − x`,i ) (x`j ,k − x`,k)′ = (n` − 1) · Ĉov(Xi ,Xk) in K`,

where:
x`j ,i = ith entry of x`j = value for variable Xi for object e`j in group K`,
x`,i = ith entry of x` = (arithmetic) mean for variable Xi in group K`.
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Maximization of Q(a) subject to ‖a‖22 = 1

Optimization Problem: Maximize

Q(a) =
(y1 − y2)

2

SS(Y )1 + SS(Y )2
=

[
a′ (x1 − x2)

]2
a′Wa

subject to the constraint ‖a‖22 = a2
1 + a2

2 + . . . + a2
m = 1.

The maximization is performed with the method of Lagrange multipliers:

We find a minimum Q(a) = 0 for vectors a, with ‖a‖22 = 1, that are
perpendicular to (x1 − x2).

We find a maximum for

a =± 1

‖W−1(x1 − x2)‖2
W−1(x1 − x2).

We may choose the positive sign for the vector.

The factor 1/‖W−1(x1 − x2)‖2 guarantees that ‖a‖22 = 1.
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Ex. 4.2: Normal and Overweight Males

Given the data in the tables below, find the vector a for the function
Y = a′x and compute the values of Y = a′x for the given data and
visualize them on the Y -axis.

Group 1: K1 = normal weight males

Person Height (cm) Weight (kg)

e1,1 165 55

e1,2 180 70

e1,3 195 85

Group 2: K2 = overweight males

Person Height (cm) Weight (kg)

e2,1 160 65

e2,2 170 90

e2,3 180 100
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Classification Rule for the 2 Group Case

Allocate an new unclassified object e with vector x = (x1, x2, . . . , xm)′ for
the values of the random variables x = (X1,X2, . . . ,Xm)′ to the group K1

if y = a′ x is closer to the mean y1 than to the mean y2.

In formulas, allocate e to K1 if

|y − y1| < |y − y2| ⇔ [y − y1]
2 < [y − y2]

2

Otherwise allocate e to the group K2.

Ex. 4.3: Given the function

Y = a′ x = (0.792,−0.611)

(
X1

X2

)
= 0.792 · X1 − 0.611 · X2

and the groups means y1 = 99.79 and y2 = 82.71 computed in Ex. 4.2,
classify a male person with height = 190 cm and weight = 120 kg.
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Linear Discriminant Analysis for Multiple Groups: Idea

Setup and Notation:

Given are g groups K1,K2, . . . ,Kg .

K` contains objects e`1, e`2, . . . , e`n`
with vectors x`1, x`2, . . . , x`n`

for
the values of the random variables x = (X1,X2, . . . ,Xm)′.

Notation for e`j and x`j : first index ` for the group K`, and
second index j for the number in the sample from group K`

Idea and Aim: We are looking for r vectors (ak)′ = (ak,1, ak,2, . . . , ak,m)
and linear functions

Yk = a′k x = ak,1 X1 + ak,2 X2 + . . . + ak,m Xm, k = 1, 2, . . . , r ,

with ‖ak‖22 = 1, k = 1, 2, . . . , r , such that the random variables
y = (Y1,Y2, . . . ,Yr )

′ optimally distinguish between the groups.
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Linear Discriminant Analysis for Multiple Groups: Model

For k = 1, 2 . . . , r , ak = (ak,1, ak,2, . . . , ak,m)′ is determined such that

Q(ak) =

∑g
`=1 n` (yk,` − yk)2∑g

`=1 SS(Yk)`

(8)

is maximized subject to the constraint ‖ak‖22 = 1, where

yk,`j = a′k x`j = value of Yk for the jth object e`j in group K`, (9)

yk =
1∑g

`=1 n`

g∑
`=1

n∑̀
j=1

yk,`j =

(
mean value of Yk in

the union of all groups

)
, (10)

yk,` =
1

n`

n∑̀
j=1

yk,`j = mean value of Yk in the group K`, (11)

and where SS(Yk)` is the sum of squared deviations for Yk in K`

SS(Yk)` =

n∑̀
j=1

(yk,`j − yk,`)
2.
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Relating the Means for x and the Y k

With the means for x = (X1,X2, . . . ,Xm)′,

x =
1∑g

`=1 n`

g∑
`=1

n∑̀
j=1

x`j = mean for x in the union of all groups,

x` =
1

n`

n∑̀
j=1

x`j = mean for x in the groups K`,

we have, from substituting (9) into (10) and (11)

yk = a′k x and yk,` = a′k x`. (12)

Hence, from (9) and (12),

yk,` − yk = a′k (x` − x) =

{
(mean for Yk in group K`)
− (grand mean for Yk),

yk,`j − yk,` = a′k (x`j − x`) =

{
(value for Yk for the jth object in
group K`)− (mean for Yk in group K`).
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Rewriting the Numerator of Q(ak)

Substituting yk = a′k x and yk,` = a′k x` (from (12)) into the numerator of
Q(ak) we find

g∑
`=1

n` (yk,` − yk)2 =

g∑
`=1

n`

[
a′k (x` − x)

]2
=

g∑
`=1

n`

[
a′k (x` − x)

][
a′k (x` − x)

]′
=

g∑
`=1

n` a′k (x` − x) (x` − x)′ ak

= a′k

(
g∑

`=1

n` (x` − x) (x` − x)′

)
ak = a′k Bak

with the between-group matrix

B =

g∑
`=1

n` (x` − x) (x` − x)′.
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Rewriting the Denominator of Q(ak)

Substituting yk,`j = a′k x`j and yk,` = a′k x` (from (9) and (12)) into the
denominator of Q(ak): we find (analogous computation)

g∑
`=1

SS(Yk)` =

g∑
`=1

n∑̀
j=1

(yk,`j − yk,`)
2 =

g∑
`=1

n∑̀
j=1

[
a′k (x`j − x`)

]2
= a′k

 g∑
`=1

n∑̀
j=1

(x`j − x`)(x`j − x`)
′

 ak = a′k Wak ,

with the in-group matrix

W =

g∑
`=1

n∑̀
j=1

(x`j − x`)(x`j − x`)
′.

Note: For g = 2 this is just the in-group matrix for the case of 2 groups.
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Maximization of Q(ak) subject to ‖ak‖22 = 1

Optimization Problem: Maximize

Q(ak) =

∑g
`=1 n` (yk,` − yk)2∑g

`=1 SS(Yk)`

=
a′k Bak

a′k Wak

subject to the constraint ‖ak‖22 = (ak,1)
2 + (ak,2)

2 + . . . + (ak,m)2 = 1.

The maximization is performed with the method of Lagrange multipliers
and leads to the eigenvalue-eigenvector equation:

W−1 Bak =
a′k Bak

a′k Wak︸ ︷︷ ︸
=λk

ak where ‖ak‖22 = 1

We see that ak is an eigenvector of W−1 B with eigenvalue λk .
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Computation of the Direction Vectors a1, a2, . . . , aq

Because rank(W) = m and t = rank(B) ≤ min{m − 1, g} we find t
non-zero eigenvalues of W−1 B.

Computation of the Eigenvalues: To find the q ≤ t positive eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λq > 0 of W−1 B, we solve

det(W−1 B− λ I) = 0.

Explanation: W−1 Bak = λk ak ⇔ (W−1 B− λk I) ak = 0 has only a
non-zero solution ak if det(W−1 B− λk I) = 0.

Computation of the ak : Solving the linear system

(W−1 B− λk I) ak = 0 ⇔ W−1 Bak = λk ak

yields the eigenvector ak to the eigenvalue λk , where we impose the
normalization ‖ak‖22 = 1.
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Dimension Reduction

Only use the eigenvectors ak with eigenvalues λk that satisfy λk > 1.
We find r ≤ q eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr > 1.

Motivation: Eigenvalues λk with λk < 1 will only provide a minor and not
very distinct separation of the groups K`. Therefore they are omitted.

We distinguish the groups K1,K2, . . . ,Kg with the r linear functions

y =


Y1

Y2

...

Yr

 =


a′1 x

a′2 x

...

a′r x

 , or Yk = a′k x, k = 1, 2, . . . , r .
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Classification Rule

Given a new object e with values x for the variables x = (X1,X2, . . . ,Xm)′,
sort e into the group K`∗ , where `∗ is such that

r∑
k=1

[
a′k (x− x`∗)︸ ︷︷ ︸

=yk−yk,`∗

]2 ≤ r∑
k=1

[
a′k (x− x`)︸ ︷︷ ︸

=yk−yk,`

]2
for all ` 6= `∗.

Here yk = a′k x is the value of Yk for the new object e.

We will only test the multiple group case with SPSS as the computations
by hand are (even for very simple examples) very lengthy and elaborate.
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Topic 5: Cluster Analysis

Idea of Cluster Analysis and Classification Types

aim: subdivision of a population into groups/clusters based on several
metric variables

types of classification

Hierarchical Classification

distance matrix

agglomerative and divisive methods of hierarchical classification

agglomerative hierarchical classification (discussed in detail)

determining the number of groups/clusters

Evaluating the Quality of a Classification

measures of homogeneity within the groups/clusters

measures of heterogeneity between the groups/clusters

Outlook: Non-Hierarchical Classification
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Idea and Aim of Cluster Analysis

Aim: Given a (usually large) population P with elements e1, e2, . . . , en,
the aim of cluster analysis (automatic classification) is to optimally
structure the population by forming homogeneous subgroups/clusters.

Each group/cluster shall contain only elements that are very similar
(homogeneous groups).

The different groups/clusters shall be very dissimilar (heterogeneity
between the different groups).

The number of the groups/clusters is not known but will be
determined during the process of forming the clusters.

Idea: Distances based on suitable metric variables can be used to separate
P into groups/clusters. These distances can also measure homogeneity
within groups and heterogeneity between groups.
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Examples where Cluster Analysis is Applied

Example (Marketing): Data on a product collected via a questionnaire.

metric variables: gross income, money spent on the product, . . .

Cluster Analysis is used to identify customer/buyer groups.

This information can then be used to target the different costumer
groups with different advertising strategies.

Example (Classifying Products): For introducing a new microscope on
the market and determining its price and marketing strategy it is necessary
to position it in relation to existing microscopes already on the market.

Metric data on prices, technical information (size, resolution, . . . ) of
microscopes on the market is collected.

Cluster analysis is used to form groups of similar microscopes.

Based on its technical specifications, the new microscope is allocated
to one of these groups, and its price can be determined.
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Different Types of Classification/Clustering

For illustration, consider a population P = {e1, e2, . . . , e9}

1 Partition: The groups have to be disjoint, i.e. each element belongs
to exactly one group.

Example: K1 = {e1, e2, e9}, K2 = {e4, e5, e8}, K3 = {e3, e6, e7}

2 Hierarchy: A hierarchy is a sequence of partitions (e.g. see page 135).

By going from a coarser to a finer partition, each group of the finer
partition has to be contained in a group from the coarser partition.

3 Covering: The groups may overlap, i.e. have elements in common.

Example: K1 = {e1, e2, e4, e5}, K2 = {e3, e4, e6, e7}, K3 = {e7, e8, e9}

4 Quasi-Hierarchy: A quasi-hierarchy is a sequence of coverings.

Note: The union of the groups K1,K2, . . . ,Kg is always the population P.
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Visualization of a Hierarchical Classification via a Tree

The diagram below shows an agglomerative hierarchical classification:

We start with the finest partition where every element forms its own group.

Then we unity in each step exactly two groups. We still have to discuss
the criterions for uniting groups.

Step 4 {e1, e2, e3, e4, e5}
↗ ↖

Step 3 {e1, e2} {e3, e4, e5}
↑ ↗ ↖

Step 2 {e1, e2} {e3, e4} {e5}
↑ ↗ ↖ ↑

Step 1 {e1, e2} {e3} {e4} {e5}
↗ ↖ ↑ ↑ ↑

Step 0 {e1} {e2} {e3} {e4} {e5}
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Dendrogram for a Hierarchical Classification

di = distance of the groups that are united in step i ,
e.g. d3 = distance of {e3, e4} and {e5}
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Distance Matrix

Distance Matrix: The starting point for any hierarchical classification of
a population of n objects e1, e2, . . . , en is the distance matrix

D = (dik)i ,k=1,2,...,n where dik = distance of ei and ek .

Measuring Distances: The distance is measured with the help of a vector
of random variables x = (X1,X2, . . . ,Xm)′ that characterizes the objects in
the population. The distance of ei and ek , with x′i = (xi1, xi2, . . . , xim) and
x′k = (xk1, xk2, . . . , xkm) for the values of the random variables, is

dik = distance of xi and xk .

Examples of Distances:

Euclidean distance
dik = ‖xi − xk‖2 =

√
(xi1 − xk1)2 + . . . + (xim − xkm)2

City-block distance: dik = ‖xi − xk‖1 = |xi1 − xk1|+ . . . + |xim − xkm|
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Hierarchical Classification: Agglomerative Approach

Agglomerative Approach: (see Example on page 135)

We start with the finest partition:
Each object forms an individual subgroup.

By successively uniting subgroups we obtain larger and more
heterogeneous groups.

In the last step we end up with one group that contains all objects.

Rules for Agglomerative Hierarchical Classification:

In each step exactly two subgroups are united.

Once a group has been formed by uniting two subgroups, this group
cannot be split up again.

Note: Different variants of the method can lead to different classifications.
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Hierarchical Classification: Divisive Approach

Divisive Approach:

We start with the coarsest partition: All objects are in one group.

Then we successively subdivide into subgroups which are each more
homogeneous.

The last step gives only subgroups that contain one object each.

Rules for Divisive Hierarchical Classification:

In each step exactly one group is split up into two.

Once a group has been split up into two subgroups the new
subgroups cannot again be reunited.

Note: The agglomerative approach and the divisive approach do not
necessarily yield the same classification.
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Method of Agglomerative Hierarchical Classification

Data: population P of n objects e1, e2, . . . , en and a distance matrix
D = (dik)i ,k=1,2,...,n for these objects (dik = distance of ei and ek).

1 Start with the finest partition P(0) = {K1,K2, . . . ,Kn} where each
object forms one group Kj = {ej}, j = 1, 2, . . . , n.

2 Find the indices p and q such that dpq = mini 6=j dij .

3 Unite the groups Kp and Kq so that we now have one group less.

4 Compute the new distance matrix: Distances from all groups to the
new group Knew

p = Kp ∪ Kq need to be computed.
(i) Compute the distances from all other groups to the new group K new

p

and replace the entries of the pth row and pth column accordingly:

dnew
pj = dnew

jp = distance of group Kj from group K new
p .

(ii) Delete the qth row and qth column of the distance matrix.

5 Return to step 2 and repeat the process with the new distance matrix
until there is only one group.
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Computation of the New Distance Matrix in Step 4

The distance dnew
pj between group Kj and the new group Knew

p = Kp ∪ Kq

can be computed with the following schemes:

Single Linkage (Nearest Neighbor): dnew
pj = min{dpj , dqj}

Interpretation: This is the distance of the two objects from Kj and
Knew

p , respectively, that are closest together (nearest neighbors).

Complete Linkage (Furthest Neighbor): dnew
pj = max{dpj , dqj}

Interpretation: This is the distance of the two objects from Kj and
Knew

p , respectively, that are furthest apart (furthest neighbors).

Average Linkage: dnew
pj = 1

2 (dpj + dqj)

And more: There are other schemes, but these are the simplest ones.
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Ex. 5.1: Classifying Digital Cameras

We are given the data on 5 digital cameras below.

Use agglomerative hierarchical classification with the city block distance
and the nearest neighbor rule to form groups of similar digital cameras.

Draw a dendrogram of your hierarchical classification.

Camera Price in 100 Euros Resolution in Pixels

e1 1 6

e2 1.5 8

e3 0.5 3

e4 5 12

e5 6 12
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How Do We Determine the Number of Groups (Clusters)?

Rule of Thumb: The number of groups g is approximately g ≈
√

n/2.

Clearly the rule of thumb gives only a rough idea.

Inspecting our Dendrogram:

As the distances between the groups are shown, we can see by inspection
in which step we should stop with uniting groups (i.e. when even larger
groups would be too heterogeneous).

Ex. 5.2 (Classifying Digital Cameras): Determine the number of groups
for the digital cameras from your results for Ex. 5.1.
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Measures of Homogeneity Within the Groups

1 Average of the distances of the objects in K`:

g1(K`) =
2

n`(n` − 1)

∑
i<j ,

ei ,ej∈K`

dij

2 Distance of the least similar objects in K`:

g2(K`) = max
ei ,ej∈K`

dij

3 Distance of the most similar objects in K`:

g3(K`) = min
ei ,ej∈K`,

i 6=j

dij

Note: The smaller the gi (K`), the more homogeneous is the group K`.
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Measures of Heterogeneity Between the Groups I

1 Complete linkage (furthest neighbor): v1(K`,K`∗) is the distance of
the objects from the two groups that are furthest apart, i.e.

v1(K`,K`∗) = max
ei∈K`,ej∈K`∗

dij .

2 Single linkage (nearest neighbor): v2(K`,K`∗) is the distance of the
objects from the two groups that are closest together, i.e.

v2(K`,K`∗) = min
ei∈K`,ej∈K`∗

dij .

3 Average linkage: v3(K`,K`∗) is the average distance of objects from
the two groups, i.e.

v3(K`,K`∗) =
1

n` · n`∗

n∑̀
i=1

n`∗∑
j=1

dij .
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Measures of Heterogeneity Between the Groups II

4 Squared Euclidean distance of the means: v4(K`,K`∗) = ‖x` − x`∗‖22,
where x` and x`∗ are the means of x in the groups K` and K`∗ :

x` =
1

n`

n∑̀
i=1

x`i and x`∗ =
1

n`∗

n`∗∑
j=1

x`∗j ,

and K` = {e`1, e`2, . . . , e`n`
} and x`i is the vector of the values of the

metric variables x for e`i from group K` (likewise for K`∗).

Note: The larger the vi (K`,K`∗), the more dissimilar are K` and K`∗ .

Ex. 5.3 (Quality of the Classification of Digital Cameras): Apply the
criteria for the quality of a hierarchical classification in our digital camera
example for the classification

K1 = {e1, e2, e3} and K2 = {e4, e5}.
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Improving a Classification: Non-Hierarchical Classification

Situation: We have already determined a fixed number g of groups,
e.g. with an agglomerative hierarchical classification.

Aim: We want to improve this classification by moving suitable objects
from one group into another.

Variance Criterion for Improving the Classification:

Move objects between groups such that for the final classification
K = {K1,K2, . . . ,Kg} the following function is minimized

z(K) =

g∑
`=1

n∑̀
i=1

‖x`i − x`‖22︸ ︷︷ ︸
=variation in group K`

, where x` =
1

n`

n∑̀
j=1

x`i︸ ︷︷ ︸
=mean for x in K`

and K` = {e`1, e`2, . . . , e`n`
} and x`i is the vector of the values of the

metric variables x = (X1,X2, . . . ,Xm)′ for e`i from group K`.
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General Advice on the Application of Cluster Analysis

You should perform cluster analyses with different distances and
different schemes for computing the new distances in the hierarchical
classification, as they will yield different classifications.

Some classifications will be better suited to your application than
others.

You should use non-hierarchical classification (with different starting
classifications) to improve your classifications.
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